

Intro to DSRC

- Definition
- Standards effort
- FCC rules
- Deployment of DSRC systems and infrastructure
- Focus Rural Applications

Dedicated Short Range Communications

"... a short to medium range (1000 meters) communications service that supports both public safety and private operations in roadside-to-vehicle and vehicle-to-vehicle communication environments by providing very high data transfer rates where minimizing latency in the communication link and isolating relatively small communication zones is important."

Technical Characteristics

- 5.850 to 5.925 GHz
- Bandwidth = 75 MHz
- Shared, but Transportation is primary
- State DOT License Holder
- FCC Part 90

Current Applications

- Use 902-928 MHz
- Unlicensed
- Toll Collection
- Garage door openers
- CVO (commercial vehicle operations)
- Telephones

Parameters	902–928 MHz	5850-5925 MHz
Spectrum	12 MHz	75 MHz
Data Rate	500 Kbps	6 – 27 Mbps
Protection	None	Primary
Interference	900 MHz Phone; Spread Spectrum Radio; Radar	Some Radar & Satellite Uplinks
Max . Allow. Range	300 Ft.	3000 Ft. (1000 m)
Min. Separation	1500 Ft.	50 Ft.
Channel Capacity	1 to 2	7
Power (Downlink)	<10 watts	<2 watts
Power (Uplink)	<4 mW	<2 watts

Standards - World Wide

- **ISO** TC204. WG15 OSI Layer 7, WG16 -air interface.
- CEN Layer 1, Layer 2, Layer 7.
- Japan Developed DSRC standards published as ARIB T55.
- Complication Japanese have a standard based on infrared technology – used in major cities and controlled by the National Police Agency.
- Korea Brazil

Standards - North American

- The overall goal of the DSRC standard program is to develop a set of DSRC standards that will support full interoperability throughout North America while satisfying all of the application requirements. The emphasis is on public safety applications, but many others are considered and allowed.
- 802.11a

Standards - North American

- ASTM
- IEEE
- ISO
- SAE
- AASHTO
- ITS America

Stakeholders

- 3-M
- AASHTO
- ACUNIA
- AMTECH
- ARINC ARMSTRONG CONSULTING
- ATHEROS
- CALTRANS
- DIAMLER-CHRYSLER
- DENSO
- GM
- GTRI
- HIGHWAY ELECTRONICS
- HITACHI
- IDMICRO
- IMEC

- INTERSIL
- ITS-A
- JHU/APL
- KING COUNTY METRO
- MARK IV
- MICOM
- MICHIGAN DOT
- MITRETEK
- MOTOROLA
- NISSAN
- NY THRUWAY AUTHORITY
- OKI ELECTRIC
- PATH NY/NJ
- RAYTHEON

Stakeholders

- SIRIT
- SUMITOMO ELECTRIC
- TECHNOCOM
- TOSHIBA
- TRANSCORE
- VISTEON
- WASHINGTON DOT
- WI-LAN

FCC

- "Intelligent Transportation Services"
- Part 90 PLMRS
- Frequency Coordination

5.8 DSRC Applications

- Over 1000 Applications Suggested
- List is still growing
- Large User Group Interest

Who?

- Automobile manufacturers
- Public Safety
- Parking Lot
- Retail Establishments
- Gas Stations
- Mass Transit
- Railroads
- etc.

What?

- Vehicle-to-vehicle Comm
- Traffic Flow (Speed & Volume)
- · Lane Occupancy
- Priority Signal Preemption
- Toll Collection
- Freight Tracking
- Roadway Conditions

- •Facilitate the advancement of vehicle safety through communication technologies.
- •Identify and evaluate the safety benefits of vehicle safety applications enabled or enhanced by communications.
- •Assess associated communication requirements including vehiclevehicle and vehicle-infrastructure communications.
- •Contribute to 5.9GHz DSRC standards and ensure they effectively support safety.

Application Examples

Assisted Collision Avoidance

Roadway Conditions

DSRC Deployment

- Rural
 - Lots of space
 - Utilities Sparse
 - Roads Less Traveled

- Urban
 - Little space
 - Utilities Plentiful
 - Congested Roads

DSRC Infrastructure

- On-board Vehicular Radio System
- Roadway Backbone Communications System
- Connectivity
 - Internet
 - Database Networks (SAN)
 - TMC

DSRC Vehicular Radio

DSRC Roadside Antenna Array

DSRC Roadside Antenna Array

DSRC Wireless Infrastructure

DSRC Flows

- Vehicle-to-Vehicle
- Vehicle-to-Roadside
- Roadside-to-World

Rural Deployment

Rural Deployment

- Obstacles
 - Lack of Power
 - Lack of Telecommunications Facilities
 - High Cost DSRC Deployment
 - Infrastructure : \$\$\$\$/Vehicle
 - Total Cost Infrastructure ÷ Vehicle
 Population = \$ per Vehicle

DSRC System

Deployment of a large scale system in a rural setting will cost about 60% of an urban system. However, cost per potential user vehicles is substantially higher for rural applications.

 How can cost of deployment be reduced?

Ad Hoc Communication Networks

Ad Hoc Communication Networks

- Randomly occurring communications networks that activate when two - or more - entities need to pass information between themselves.
- The network exists as long as the need for communication exists.
- The networks is usually supported by underlying infrastructure

Ad Hoc Communication Networks

- Examples
 - Newspaper
 - Letter
 - Conference Call
 - World Wide Web
 - This Discussion Group

AD Hoc Data Network

Basic

AD Hoc Data Network

AD Hoc Vehicle Network

Network
 established between
 vehicles and signal
 device

Rural Telematics Application

- · Road Hazards
 - Ice
 - Flood
 - Accident
- Need to get information to DOT
- Need to get information to other vehicles

Urban-Rural

- 25 Vehicles per lane mile
- One network node per 1000 feet
- Available Carrier Network
- Cellular Available

- Sparse Network Node Population
- · Once every 5 miles
- 4 Vehicles per lane mile
- Carrier Network un-Available
- Lack of Cellular

Rural Telematics Hazard

- Any Information Is Better Than No Information
- Use of Ad Hoc for "Store & Forward"

Lesson

- All Information is Valuable
- "Think Outside the Box"
- Take Advantage of What is Available

DSRC Resources

- James Arnold FHWA james.a.arnold@fhwa.dot.gov
- Lee Armstrong Armstrong Consulting
 Ira@tiac.net
- Broady Cash AIRINC bcash@airinc.com
- Shel Leader ITS/Communications shel@sleader.com

DSRC Resources - WWW

ASTM E17.51	http://www.astm.org/cgi- bin/SoftCart.exe/COMMIT/COMMITTEE/E17.htm?L+mystore+nzc a5160+1004745838
IEEE SCC32	http://grouper.ieee.org/groups/scc32/index.html
IEEE standards	http://standards.ieee.org/
SAE Discussion Forums	http://www.sae.org/jsp/forumsindex.jsp
ITS America	http://www.itsa.org/standards
DOT ITS	http://www.its.dot.gov/, http://itsarch.iteris.com/itsarch/html/standard/standard.htm
OFDM Forum	http://www.ofdm-forum.com/index.asp?ID=92
Transit Standards Consortium	http://www.tsconsortium.org/
IPV6 Forum	http://www.ipv6forum.com/