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Large Scale Path Loss
Log Normal Shadowing
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The Flat Fading Channel
•The channel functions are random processes and hard to characterize
•We therefore use the channel correlation functions
•Now assume:

•The channel impulse response is a random variable
• We describe the channel at any time t using a pdf

Consider a flat fading channel – where the delay spread
is small compared with the symbol duration.
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The Flat Fading Channel

FLAT FADING CHANNEL
• The delay spread does not effect the received signal
• The channel delay function is reduced to the mean delay τ

δ(t-τ)
• The channel exhibits a time-varying gain g(t)
• g(t)  has a “short term fading” component Z(t) due to
multipath.  It is modeled statistically by a Rayleigh,
Rician, or Nakagami disitribution and is independent of the
distance between the transmitter and the receiver. 

• g(t) also has a “long-term” path loss component that is the 
mean of g(t)
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Large scale path loss
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The Flat Fading Channel

The dashed line is the mean (m) path loss.
The variation about the mean is described by the Normal Distribution
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Plane Earth Loss*-(again)

“Antennas and Propagation
for Wireless Communication 

Systems” by Saunders
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Log-Distance PL with Shadowing – mean path loss
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Typical Path Loss Exponents for Different Environments
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Log-Distance PL with Shadowing –
Statistical component to loss

The total path loss Lp(d) with shadowing is then:

Statistical path loss component
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note that for         , d0 and k may be adjusted to model Friss loss, plane earth
loss, or any of the other models for mean path loss at a 
given frequency.

Log-Distance PL with Shadowing
The total path loss Lp(d) with shadowing is then:
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Log-Distance PL with Shadowing
Shadowing: When the line of site path is blocked by an obstruction such as

a building or a hill that is much larger than the λ of the signal

Long term fading is then a combination of the log-distance path loss and the 
log-normal shadowing -that is statistical.  Let ε(dB) be a zero-mean Gaussian 
distributed random variable (d dB) with a standard deviation  σε (in dB).  The pdf of ε(dB) is 
given as:
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A variable transform of x will give ε in a linear scale and is is sad to follow a log-normal 
distribution with pdf:



6

11

Log Normal  Shadowing*

*Rappaport
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• σε is approximately  8 to10 dB outdoors, and 4 to 6 dB in a typical room.
• refer to the class discussion for the calculation of σε from field data.

Log-Distance PL with Shadowing
•The statistical term is a log-normal distribution
•This distribution is fully defined by the mean, m=0, and the
standard deviation, σε in dB 

• What we want to determine is the P(εdB)>εdBmax
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EE447

Propagation –
Small Scale Multipath Fading
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Review:  The Normal, Gaussian, Distribution
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Review:  The Normal Distribution
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The Q-function as the area under the 
tail of the Normal pdf
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Review:  The Normal or Gaussian Distribution
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The Log Normal  Distribution in path loss
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Given a Normal Distribution with  mean=m and standard deviation= σ : 

•m is the mean path loss  as shown in previous slides
• σε is approximately  8 to10 dB outdoors, and 4 to 6 dB in a typical room.
• refer to the class discussion for the calculation of σε from field data.
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Review - The Q function
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pL ε+= pLpL max
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Example:
It has been determined that a 

link will operate as long as the 
path lossdoes not exceed the 
mean path loss by more than 
5 dB.  The standard deviation 
of the path loss variation has 
been determined to  σε=5dB.  

What is the probability that the 
path loss will exceed Lmean+5 
dB?  

What is the probability that the 
path loss will exceed 
Lmean+10 dB? 

Log-Normal PL with Shadowing-Example
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Example:
It has been determined that a link will operate as long as the path loss

does not exceed the mean path loss by more than 5 dB.  The standard 
deviation of the path loss variation has been determined to  σε=5dB.  
What is the probability that the path loss will exceed Lp+5 dB? What is
the probability that the path loss will exceed Lp+10 dB? 

Log-Distance PL with Shadowing-Example

%9.15159.0)1(

)1()5(
5

5)5(

5)5(

==

=>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=>

=>

Q
tableQthefrom
QP

QQP

isdBgivendBP

ε
σ
ε

σ
εε

σε

εε

ε

%3.20228.0)2(

)2()10(
5

10)10(

5)10(

==

=>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=>

=>

Q
tableQthefrom
QP

QQP

isdBgivendBP

ε
σ
ε

σ
εε

σε

εε

ε

This is why links are often designed so that the mean received power
is about 10 dB above the minimum power required for proper operation
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Multipath Propagation
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Multipath Propagation
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Multipath Propagation
Amplitude and

Phase of the Received
Signal Vary
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Multipath Propagation
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Time-Variant Transfer Function
Impulse Response

Phase may change more rapidly than Amplitude
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Time-Variant Transfer Function
Impulse Response
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Time-Variant Transfer Function
Impulse Response
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Small-Scale Multipath Fading
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Small-Scale Multipath Fading

•Given a channel with N scatterers, each with gain αn(t) and delay τn(t)
• Consider a digital transmission with carrier fc and a symbol interval >> Δτ

the delay spread 
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Small-Scale Multipath Fading

Let Z(t) = Zc(t) –jZs(t)
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2.5 Rayleigh Fading - NLOS

34

Rayleigh Fading - NLOS
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Rician –LOS Propagation
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Rician –LOS Propagation
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Small-Scale Multipath Fading

Rayleigh
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EE447

Propagation –
LCR and AFD
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Other Statistics

•The pdfs of the amplitude distortion fα(x) and the 
phase distortion fθ(x) explain how the signal will 
behave at each instant in time. They do not tell us 
how they change with time.

• We need to know how fast the channel fading 
changes with time.

•LCR- The Level Crossing Rate

•AFD- The Average Fade Duration

•LCR and AFD describe the frequency of fading
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LCR- Level Crossing Rate

•R is the chosen threshold
• The observation time is [0,T]
•The number of positive 
crossings is MT = 5
• NR = MT /T = # per second
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LCR
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LCR
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LCR

44

LCR
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LCR

The maximum LCR is at ρ = -3 dB because the pdf of α is maximized at threshold

max
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AFD- Average Fade Duration
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AFD- Average Fade Duration
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AFD- Average Fade Duration
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AFD- Average Fade Duration

χR
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AFD- Average Fade Duration


