

Log-Distance PL with Shadowing – mean path loss						
$\overline{L_p}(d) \propto \left(\frac{d}{d_0}\right)^k$, for $d \ge d_0$						
$\overline{L_p} = \overline{L_p}(d_0) + 10kLog_{10}\left(\frac{d}{d_0}\right)dB, \text{ for } d \ge d_0$ $d_0 \cong 1 \text{ km for macrocells, 1m indoors}$						
Typical Bath Loss Exponents for Different Environments						
Typical Faul Loss Exponents for Different Environments						
Environment	Path loss Exponent, κ					
free space	2					
urban cellular radio	2.7 to 3.5					
shadowed urban cellular radio	3 to 5					
in building with LOS	1.6 to 1.8					
obstructed in building	4 to 6	7				

<text><equation-block><text><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

The Log Normal Distribution in path loss

Given a Normal Distribution with mean=m and standard deviation= σ :

$$P(X > x) = Q\left(\frac{x - m}{\sigma}\right)$$

•m is the mean path loss as shown in previous slides

• σ_{ϵ} is approximately $\,$ 8 to10 dB outdoors, and 4 to 6 dB in a typical room.

 \bullet refer to the class discussion for the calculation of $\sigma_{\!\epsilon}$ from field data.

	Revi	ew	- The G	ען צ	nction	
TABLE 5.1	TABLE OF THE (2 FUNCT	ION			
0	5.00000e-01	2.4	8.197534e-03	4.8	7.933274e-07	
0.1	4.601722e-01	2.5	6.209665e-03	4.9	4.791830e-07	
0.2	4.207403e-01	2.6	4.661189e-03	5.0	2.866516e-07	
0.3	3.820886e-01	2.7	3.466973e-03	5.1	1.698268e-07	
0.4	3.445783e-01	2.8	2.555131e-03	5.2	9.964437e-06	
0.5	3.085375e-01	2.9	1.865812e-03	5.3	5.790128e-08	
0.6	2.742531e-01	3.0	1.349898e-03	5.4	3.332043e-08	
0.7	2.419637e-01	3.1	9.676035e-04	5.5	1.898956e-08	
0.8	2.118554e-01	3.2	6.871378e-04	5.6	1.071760e-08	
0.9	1.840601e-01	3.3	4.834242e-04	5.7	5.990378e09	
1.0	1.586553e-01	3.4	3.369291e-04	5.8	3.315742e-09	
1.1	1.356661e-01	3.5	2.326291e 04	5.9	1.817507e-09	
1.2	1.150697e-01	3.6	1.591086e-04	· 6.0	9.865876e-10	
1.3	9.680049e-02	3.7	1.077997e-04	6.1	5.303426e-10	
1.4	8.075666e-02	3.8	7.234806e05	6.2	2.823161e-10	
1.5	6.680720e-02	3.9	4.809633e-05	6.3	1.488226e-10	
1.6	5.479929e-02	4.0	3.167124e-05	6.4	7.768843e-11	
1.7	4.456546e-02	4.1	2.065752e-05	6.5	4.016001e-11	
1.8	3.593032e-02	4.2	1.334576e-05	6.6	2.055790e-11	
1.9	2.871656e-02	4.3	8.539898e-06	6.7	1.042099e-11	
2.0	2.275013e-02	4.4	5.412542e-06	6.8	5.230951e-12	
2.1	1.786442e-02	4.5	3.397673e-06	6.9	2.600125e-12	
2.2	1.390345e-02	4.6	2.112456e-06	7.0	1.279813e-12	
2.3	1.072411e-02	4.7	1.300809e-06			

Log-Distance PL with Shadowing-Example

Example:

It has been determined that a link will operate as long as the path loss does not exceed the mean path loss by more than 5 dB. The standard deviation of the path loss variation has been determined to σ_{ϵ} =5dB. What is the probability that the path loss will exceed Lp+5 dB? What is the probability that the path loss will exceed Lp+10 dB?

. . . .

$P(\varepsilon > 5dB)$ given $\sigma_{\varepsilon} = 5dB$ is	$P(\varepsilon > 10dB)$ given $\sigma_{\varepsilon} = 5dB$ is			
$P(\varepsilon > 5) = Q\left(\frac{\varepsilon}{\sigma_{\varepsilon}}\right) = Q\left(\frac{\varepsilon = 5}{\sigma_{\varepsilon}}\right)$	$P(\varepsilon > 10) = Q\left(\frac{\varepsilon}{\sigma_{\varepsilon}}\right) = Q\left(\frac{\varepsilon = 10}{\sigma_{\varepsilon} = 5}\right)$			
$P(\varepsilon > 5) = Q(1)$	$P(\varepsilon > 10) = Q(2)$			
from the Q table	from the Q table			
Q(1) = 0.159 = 15.9%	Q(2) = 0.0228 = 2.3%			

This is why links are often designed so that the mean received power is about 10 dB above the minimum power required for proper operation

Time-Variant Transfer Function Impulse Response

Definition 2.1 The impulse response of an LTV channel, $h(\tau, t)$, is the channel output at t in response to an impulse applied to the channel at $t = \tau$.

In Definition 2.1, the variable τ represents the propagation delay. From the definition and Eq. (2.2.5), the channel output can be represented in terms of the impulse response and the

channel input by

$$r(t) = \int_{-\infty}^{\infty} h(\tau, t) x(t-\tau) d\tau.$$
(2.2.6)

The channel impulse response for the channel with N distinct scatterers is then

$$h(\tau, t) = \sum_{n=1}^{N} \alpha_n(t) e^{-j\theta_n(t)} \delta(\tau - \tau_n(t)), \qquad (2.2.7)$$

Phase may change more rapidly than Amplitude

27

28

Time-Variant Transfer Function Impulse Response

2.2.2 Time-Variant Transfer Function

With the multipath channel characterized as a linear system, the channel behavior can also be examined in the frequency domain via a Fourier transformation. Time and frequency have an inverse relationship.

Definition 2.2 The time-variant transfer function of an LTV channel is the Fourier transform of the impulse response, $h(\tau, t)$, with respect to the delay variable τ .

Let H(f, t) denote the channel transfer function, as shown in Figure 2.6. We have the Fourier transform pair

$$\begin{cases} H(f,t) = \mathcal{F}_{\tau}[h(\tau,t)] = \int_{-\infty}^{\infty} h(\tau,t)e^{-j2\pi f\tau}d\tau \\ h(\tau,t) = \mathcal{F}_{f}^{-1}[H(f,t)] = \int_{-\infty}^{\infty} H(f,t)e^{+j2\pi f\tau}df \end{cases}$$

where the time variable t can be viewed as a parameter. The received signal can be represented in terms of the transmitted signal and the transfer function as

$$r(t) = \int_{-\infty}^{\infty} R(f,t) e^{j2\pi f t} df, \qquad (2.2.8)$$

where

$$R(f,t) = H(f,t)X(f)$$

and

$$X(f) = \mathcal{F}[x(t)]$$

At any instant, say $t = t_0$, the transfer function $H(f, t_0)$ characterizes the channel in the frequency domain. As the channel changes with t, the frequency domain representation also

LCR

 $N_R = E[upward crossing rate at level R].$ (2.5.8)

Let $\dot{\alpha}$ denote the amplitude fading rate, $d\alpha(t)/dt$, at any time t, and let $f_{\alpha\dot{\alpha}}(x, y)$ denote the joint pdf of the amplitude fading $\alpha(t)$ and its derivative $\dot{\alpha}(t)$ at any time t. Then $f_{\alpha\dot{\alpha}}(x, y)|_{x=R}$ gives the joint pdf at the amplitude level R. From the definition, LCR is the expectation of the positive rate (i.e., $\dot{\alpha} > 0$) and at the level R, which can be expressed by

$$N_R = \int_0^\infty y f_{\alpha\dot{\alpha}}(x, y)|_{x=R} dy.$$
 (2.5.9)

For the Rayleigh fading environment studied in Subsection 2.5.1, it can be shown that [130]

$$f_{\alpha\dot{\alpha}}(x, y) = \frac{x}{\sqrt{2\pi\sigma_{\dot{\alpha}}^2 \sigma_z^2}} \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_z^2} + \frac{y^2}{\sigma_{\dot{\alpha}}^2}\right)\right], \quad x \ge 0, -\infty < y < \infty, \qquad (2.5.10)$$

where
$$\sigma_{\dot{\alpha}}^2 = \frac{1}{2}(2\pi\nu_m)^2 \sigma_z^2$$

LCR

$$N_R = \sqrt{2\pi} v_m \rho \exp(-\rho^2)$$

The LCR is a product of two terms. The first term, $\sqrt{2\pi}v_m$, is proportional to the maximum Doppler shift. Since $v_m = \frac{Vf_c}{c}$, where V is the velocity of the mobile user, f_c is the carrier frequency, and c is the speed of light, LCR is proportional to the user speed and the carrier frequency.

43

AFD- Average Fade Duration

$$\chi_{\rm R} = \frac{\exp(\rho^2) - 1}{\sqrt{2\pi}\nu_m\rho}$$

The AFD is a product of two components. The first component, $1/(\sqrt{2\pi}v_m)$, indicates that the AFD is inversely proportional to the mobile speed and the carrier frequency.

The second term, $[\exp(\rho^2) - 1]/\rho$, depends only on the normalized threshold ρ . Figure 2.26 shows how the component changes with the normalized threshold in dB. The value of the AFD increases dramatically as the threshold ρ increases much above the rms value. This can be explained from Figure 2.25. With a large threshold value, it is very unlikely for the amplitude level α to cross the threshold. Therefore, the length of time that α stays below the threshold can be very long.

