

16 Review: The Normal or Gaussian Distribution $\overline{}$ ⎠ $\left(\frac{x-m}{x}\right)$ ⎝ $P(X > x) = Q\left(\frac{x-m}{\sigma}\right)$ $\left\lfloor 1 - erf\left(\frac{x}{\sqrt{2}}\right) \right\rfloor$ $Q(x) = \frac{1}{2} erfc(\frac{x}{\sqrt{2}}) = \frac{1}{2} \left[1 - erf(\frac{x}{\sqrt{2}})\right]$ $=\frac{2}{\sqrt{\pi}}\int e^{-x} dx =$ $=\frac{1}{\sqrt{2\pi}}\int$ $Q(x) = P(X > x)$ ຶ∩
ົ ∞ − $erfc(x) = \frac{2}{\sqrt{\pi}} \int e^{-x^2} dx = 2Q(x)$ $\int \frac{1}{\pi}$ e² dx *x* $Q(x) = \frac{1}{\sqrt{2}}$ e *x x* $f(x) = \frac{1}{2} erfc(\frac{x}{\sqrt{2}}) = \frac{1}{2} \left[1 - erf(\frac{x}{\sqrt{2}})\right]$ $f(x) = \frac{2}{\sqrt{2}} \int_{0}^{\infty} e^{-x^2} dx = 2Q(x\sqrt{2})$ 2 $f(x) = \frac{1}{\sqrt{2}} \int_{0}^{\infty} e^{-\frac{x^2}{2}} dx$ 2 where erf is the error function (check your calulator) complementary error function:

The Log Normal Distribution in path loss

Given a Normal Distribution with mean=m and standard deviation= σ :

$$
P(X > x) = Q\left(\frac{x-m}{\sigma}\right)
$$

•*m* is the mean path loss as shown in previous slides

 \bullet σ_{ε} is approximately 8 to 10 dB outdoors, and 4 to 6 dB in a typical room.

• refer to the class discussion for the calculation of σ_{ε} from field data.

Log-Distance PL with Shadowing-Example

Example:

It has been determined that a link will operate as long as the path loss does not exceed the mean path loss by more than 5 dB. The standard deviation of the path loss variation has been determined to $\sigma_s = 5dB$. What is the probability that the path loss will exceed Lp+5 dB? What is the probability that the path loss will exceed Lp+10 dB?

$$
P(\varepsilon > 5dB) \text{ given } \sigma_{\varepsilon} = 5dB \text{ is}
$$
\n
$$
P(\varepsilon > 10dB) \text{ given } \sigma_{\varepsilon} = 5dB \text{ is}
$$
\n
$$
P(\varepsilon > 5) = Q\left(\frac{\varepsilon}{\sigma_{\varepsilon}}\right) = Q\left(\frac{\varepsilon = 5}{\sigma_{\varepsilon}}\right)
$$
\n
$$
P(\varepsilon > 10) = Q\left(\frac{\varepsilon}{\sigma_{\varepsilon}}\right) = Q\left(\frac{\varepsilon = 10}{\sigma_{\varepsilon}}\right)
$$
\n
$$
P(\varepsilon > 5) = Q(1)
$$
\n
$$
P(\varepsilon > 10) = Q(2)
$$
\nfrom the Q table

\n
$$
Q(1) = 0.159 = 15.9\%
$$
\nThis is why like any often decreasing to that the mean specified power.

20 **is about 10 dB above the minimum power required for proper operationThis is why links are often designed so that the mean received power**

Time-Variant Transfer Function Impulse Response

Definition 2.1 The impulse response of an LTV channel, $h(\tau, t)$, is the channel output at t in response to an impulse applied to the channel at $t - \tau$

In Definition 2.1, the variable τ represents the propagation delay. From the definition and Eq. $(2.2.5)$, the channel output can be represented in terms of the impulse response and the

channel input by

$$
r(t) = \int_{-\infty}^{\infty} h(\tau, t)x(t - \tau) d\tau.
$$
 (2.2.6)

The channel impulse response for the channel with N distinct scatterers is then

$$
h(\tau, t) = \sum_{n=1}^{N} \alpha_n(t) e^{-j\theta_n(t)} \delta(\tau - \tau_n(t)),
$$
\n(2.2.7)

Phase may change more rapidly than Amplitude

27

Time-Variant Transfer Function Impulse Response

2.2.2 Time-Variant Transfer Function

With the multipath channel characterized as a linear system, the channel behavior can also be examined in the frequency domain via a Fourier transformation. Time and frequency have an inverse relationship.

Definition 2.2 The time-variant transfer function of an LTV channel is the Fourier transform of the impulse response, $h(\tau, t)$, with respect to the delay variable τ .

Let $H(f, t)$ denote the channel transfer function, as shown in Figure 2.6. We have the Fourier transform pair

$$
\begin{cases} H(f,t) = \mathcal{F}_t[h(\tau,t)] = \int_{-\infty}^{\infty} h(\tau,t) e^{-j2\pi ft} d\tau \\ h(\tau,t) = \mathcal{F}_f^{-1}[H(f,t)] = \int_{-\infty}^{\infty} H(f,t) e^{+j2\pi ft} df \end{cases}
$$

where the time variable t can be viewed as a parameter. The received signal can be represented in terms of the transmitted signal and the transfer function as

$$
r(t) = \int_{-\infty}^{\infty} R(f, t)e^{j2\pi ft} df,
$$
\n(2.2.8)

where

$$
R(f, t) = H(f, t)X(f)
$$

and

$$
X(f) = \mathcal{F}[x(t)]
$$

At any instant, say $t = t_0$, the transfer function $H(f, t_0)$ characterizes the channel in the frequency domain. As the channel changes with t, the frequency domain representation also

LCR $N_R =$ E[upward crossing rate at level R]. $(2.5.8)$ Let α denote the amplitude fading rate, $d\alpha(t)/dt$, at any time t, and let $f_{\alpha\dot{\alpha}}(x, y)$ denote the joint

pdf of the amplitude fading $\alpha(t)$ and its derivative $\dot{\alpha}(t)$ at any time t. Then $f_{\alpha\dot{\alpha}}(x, y)|_{x=R}$ gives the joint pdf at the amplitude level R . From the definition, LCR is the expectation of the positive rate (i.e., $\alpha > 0$) and at the level R, which can be expressed by

$$
N_R = \int_0^\infty y f_{\alpha\dot{\alpha}}(x, y)|_{x=R} dy.
$$
 (2.5.9)

For the Rayleigh fading environment studied in Subsection 2.5.1, it can be shown that [130]

$$
f_{\alpha\dot{\alpha}}(x, y) = \frac{x}{\sqrt{2\pi\sigma_{\dot{\alpha}}^2\sigma_z^2}} \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_z^2} + \frac{y^2}{\sigma_{\dot{\alpha}}^2}\right)\right], \quad x \ge 0, -\infty < y < \infty, \qquad \frac{1}{\pi} \tag{2.5.10}
$$

where

$$
\sigma_{\dot{\alpha}}^2 = \frac{1}{2}(2\pi v_m)^2 \sigma_z^2
$$

The LCR is a product of two terms. The first term, $\sqrt{2\pi}v_m$, is proportional to the maximum
Doppler shift. Since $v_m = \frac{Vf_c}{c}$, where V is the velocity of the mobile user, f_c is the carrier
frequency, and c is the s frequency.

AFD- Average Fade Duration

$$
\chi_{\rm R} = \frac{\exp(\rho^2) - 1}{\sqrt{2\pi} \nu_m \rho}
$$

The AFD is a product of two components. The first component, $1/(\sqrt{2\pi}v_m)$, indicates that the AFD is inversely proportional to the mobile speed and the carrier frequency.

The second term, $\left[\exp(\rho^2) - 1\right] / \rho$, depends only on the normalized threshold ρ . Figure 2.26 shows how the component changes with the normalized threshold in dB. The value of the AFD increases dramatically as the threshold ρ increases much above the rms value. This can be explained from Figure 2.25. With a large threshold value, it is very unlikely for the amplitude level α to cross the threshold. Therefore, the length of time that α stays below the threshold can be very long.

