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Large Scale Path Loss
Log Normal Shadowing

The Flat Fading Channel

*The channel functions are random processes and hard to characterize
*We therefore use the channel correlation functions
*Now assume:

*The channel impulse response is a random variable

» We describe the channel at any time t using a pdf

Consider a flat fading channel —where the delay spread
is small compared with the symbol duration.




The Flat Fading Channel

FLAT FADING CHANNEL

» The delay spread does not effect the received signal

» The channel delay function is reduced to the mean delay ©
d(t-7)

» The channel exhibits a time-varying gain g(t)

* g(t) has a “short term fading” component Z(t) due to
multipath. It is modeled statistically by a Rayleigh,
Rician, or Nakagami disitribution and is independent of the
distance between the transmitter and the receiver.

* g(t) also has a “long-term” path loss component that is the
mean of g(t)

Large scale path loss

x(1) r(r) = g()x(t —7)

Flat fading channel
A ) = g(1)8(1—7%)

(a) The fiat fading channel
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The Flat Fading Channel
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Figure 2.15 Representation of long-term and short-term fading components.

The dashed line is the mean (m) path loss.
The variation about the mean is described by the Normal Distribution

Plane Earth LoSS*-(again)

ANTENNAS AND PROPAGATION FOR WIRELESS COMMUNICATION SYSTEMS
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Figure 5.6: Plane earth loss (-), free space loss (...), approximate plane earth loss (- -)

from (5.34). Here h,, = 1.5 m, hy=30m, f=900 MHz




Log-Distance PL with Shadowing — mean path loss

L (d)ox (dij , ford > d,

0

— = d
L,=L,(d,) +10kL0glo(d—j dB, ford > d,

0
d, = 1km for macrocells,1mindoors

Typical Path Loss Exponents for Different Environments
Environment Path loss Exponent, «
free space 2
urban cellular radio 2.7t035
shadowed urban cellular radio 3to5
in building with LOS 1.6t01.8
obstructed in building 4106 !

Log-Distance PL with Shadowing —
Statistical component to loss
The total path loss L,(d) with shadowing is then:
Ly(d)=Ly(d) + ewn)
= i.p(do) + 10« 10g10 (%) + € (dB}, d > d()

| Statistical path loss component |

20/1n 10 [ (201og,o _v)z]
€X] _—— ] -

N 20¢

The first-order statistics of log-normal shadowing are characterized by the standard deviation o,

which can be obtained from measurements. For example, 8 dB is a typical value for o, in an
Outdoor cellular system and 5 dB is a value for an indoor environment.

fe(y) = (2.4.16)




Log-Distance PL with Shadowing

The total path loss L (d) with shadowing is then:

L(d)=L,+¢, dB
&,z 1S the statistical variation of the pathloss

— = d
L,=L,(d,)+10kLog,, (d_

j is the mean pathloss
0

L,(d) <L, for the TRIink to perform correctly

note that for L_ , dy and k may be adjusted to model Friss loss, plane earth
loss, or any of the other models for mean path loss at a
given frequency.

Log-Distance PL with Shadowing

Long term fading is then a combination of the log-distance path loss and the

log-normal shadowing -that is statistical. Let ¢(dB) be a zero-mean Gaussian
distributed random variable (d dB) with a standard deviation o, (in dB). The pdf of ¢(dB) is
given as:

ﬂay—zfﬁﬁfo)[ al

A variable transform of x will give ¢ in a linear scale and is is sad to follow a log-normal
distribution with pdf:

20/In(10) {gm”)}

1) = 2nyo,
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Log Normal Shadowing*
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Figure 4.17 Scatter plot of measured data and corresponding MMSE path loss model for many
cities in Germany. For this data, n = 2.7 and ¢ = 11.8 dB [from [Sei91] © IEEE].
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Log-Distance PL with Shadowing

*The statistical term is a log-normal distribution

This distribution is fully defined by the mean, m=0, and the
standard deviation, o, in dB

» What we want to determine is the P(e45)>€4amax

_20/In(10) {(20'0%”}

* o, is approximately 8 t010 dB outdoors, and 4 to 6 dB in a typical room.
« refer to the class discussion for the calculation of o, from field data.
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EE447

Propagation —
Small Scale Multipath Fading
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Review: The Normal, Gaussian, Distribution

x—m)?
1 _(x-m)

2 e 20°
\NLTTO

CDF: @, (x)=P(X <x)
= [ fe(
normalized,m =0, o =1:

1
N2

PDF: f,(x)=

2

—t
e?dt

®,(x)= J-;

Fx(x)

\27a?
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Review: The Normal Distribution

P(X >x)=1-®,(x) = 0(x)

fx(x)

O(-x) =1-(O(x)
0(0) =3

O(x) =0

Upper Bounds:

Q()C)S%e2 x>0

[\)

1 —X
e

or Q(x)<—e? x20
2z The Q-function as the area under the

tail of the Normal pdf
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Review: The Normal or Gaussian Distribution

0(x) = P(X >x)
Q(x):ﬂie dx

complementary error function:

—ime_x2 x =20(x
erfc(x)—\/;!: dx = 20(x/2)

1 X 1 X
= — —_— ) = — l— RS
0(x) 2erfC( /—2) 2{ erf ( ,—2}
where erf is the error function (check your calulator)

P(X > x) :Q(x_mj
O

16




The Log Normal Distribution in path loss

Given a Normal Distribution with mean=m and standard deviation= o :

P(x>x) =0l 2~
(o2

*m is the mean path loss as shown in previous slides
* o, is approximately 8 to10 dB outdoors, and 4 to 6 dB in a typical room.
» refer to the class discussion for the calculation of ¢, from field data.

17

Review - The Q function

TABLE 5.1 TABLE OF THE Q FUNCTION

0 5.000000e-01 2.4 8.197534e-03 4.8 7.933274e-07
0.1 4.601722¢-01 2.5 6.209665e-03 49 4.791830e-07
0.2 4.207403e-01 26 4.661189-03 5.0 2.866516e-07
0.3 3.820886e-01 2.7 3.466973e-03 5.1 1.698268e—07
04 3.445783e-01 2.8 2.555131e-03 52 9.964437e-06
0.5 3.085375e-01 29 1.865812e-03 53 5.790128e-08
0.6 2.742531e-01 3.0 1.349898e-03 54 3.332043e-08
0.7 2.419637e-01 3.1 9.676035e-04 5.5 1.898956e-08
0.8 2.118554e-01 32 6.871378e-04 5.6 1.071760e-08
0.9 1.840601e-01 33 4.834242e-04 57 5.990378e-09
1.0 1.586553¢-01 34 3.369291e-04 58 3.315742e-09
1.1 1.356661e-01 35 2.326291e-04 5.9 1.817507e-09
1.2 1.150697¢-01 3.6 1.591086e-04 6.0 9.865876e-10
1.3 9.680049¢-02 37 -1.077997e-04 6.1 5.303426e-10
1.4 8.075666e-02 38 7.234806e-05 6.2 2.823161e-10
1.5 6.680720e-02 39 4.809633e-05 6.3 1.488226e-10
1.6 5.479929e-02 4.0 3.167124e-05 6.4 7.768843e-11
1.7 4.456546e-02 4.1 2.065752e-05 6.5 4.016001e-11
1.8 3.593032e-02 4.2 1.334576e-05 6.6 2.055790e-11
1.9 2.871656e-02 43 8.539898e-06 6.7 1.04209%-11
2.0 2.275013e-02 4.4 5.412542e-06 6.8 5.230951e-12
2.1 1.786442e-02 45 3.397673e-06 6.9 2.600125¢-12
22 1.390345e-02 4.6 2.112456e-06 7.0 1.279813e-12
2.3 1.072411e-02 | 47 1.300809e-06
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Log-Normal PL with Shadowing-Example

Example:

It has been determined that a
link will operate as long as the
path lossdoes not exceed the
mean path loss by more than
5 dB. The standard deviation
of the path loss variation has
been determined to ¢,=5dB.

What is the probability that the
path loss will exceed Lmean+5
dB?

What is the probability that the
path loss will exceed

4 g

Lmean+10 dB?
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Log-Distance PL with Shadowing-Example

Example:

It has been determined that a link will operate as long as the path loss
does not exceed the mean path loss by more than 5 dB. The standard
deviation of the path loss variation has been determined to ¢,=5dB.
What is the probability that the path loss will exceed Lp+5 dB? What is
the probability that the path loss will exceed Lp+10 dB?

P(&>5dB) given o, =5dB is

ol 2

&

P(e>5)=0(1)
from the Q table
0(1) =0.159 =15.9%

P(e>10dB) given o, =5dB is
P(e>10) = Q(iJ = Q(“’" :10]
o

; o,.=5

&

P(e>10)=0(2)
from the Q table
0(2) =0.0228 = 2.3%

This is why links are often designed so that the mean received power
is about 10 dB above the minimum power required for proper operation

10



Multipath Propagation

Scatterers
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Figure 2.1 Multipath spread due to channe! scattering. T \8 ety

Figure 2.2 Eflipsoidal portrayal of scatterer location.
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Multipath Propagation

Time Dispersion. Because multiple propagation paths have different propagation delavs. the

transmitted point source will be received as a
give rise to distnct multiple paths, which are characterized hy their
medium. As depicted in Figure 2.2, all scatterers are located on ellipses with the transmitier (Tx)
and receiver (Rx) as the foci. One ellipse is associated with one path length. Theretore. signals
reflected by scatterers located on the same cllipse will cxperience the same propagation Jelay.
The signal components from these multiple paths are indistinguishable at the receiver. Signals that
are reflected by scatterers located on different cilipses will arrive at the receiver with differentiut
delavs. [f the maximum differential delay spread is small compared with the symbol duration of the
trun;mit[ed signal. the channel is said to exhibit flat fading. If the differential delay spread is large
compared with the symbol interval. the channel exhibits frequency-selective fading. In the time
i i smitted symbols will overiap. giving
rise to a phenomenen known [ST is 4 signal-dependent distortion.
The severily of 181 increases y sprcad. The [SI distortion in the time
domain can also be examined in the frequency domain. ISI degrades transmission performance.
Channet equalization technigues can be used to combat ISL as discussed in Chapter 4.

Nonoverlapping scatterers

focations in the scattening

domain, the recetved signals cc

24
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Multipath Propagation

Amplitude and
Phase of the Received
Signal Vary

T

oM 27t )

ransmitter

QaCOS( 2T = T 1)

N
Receiver

Figure 2.3 A channe! with two propagation paths.

rity = wy cos(2m fot) + oz cos(2m fr.(r — 1)),

rt) = e cos2m for + @),

where e
[ 3 A
o= foi + oy + 2ay@acos(2Tf T)
and
— _tan-! | O23NETAT)
¢ = —tan oy — ey Cosi 2T fiT)
25
Multipath Propagation
”() .5 1 13 25

Figure 2.4 The amplitude fluctuation of the two-path channel with @1 =2 and a3 = 1
in summary, multipath propagation in the wirciess mobile environment results in a fading
dispersive channel. The signal propagation environment changes as the mobile station moves
and/or as any surrounding scatterers move. Therefore, the channel is time varving and can be
modeled as a linedr rime-variant (LTV) system.

26




Time-Variant Transfer Function
Impulse Response

Definition 2.1 The impulse response of an LTV channel. /(7. 1), is the channel output at ¢
in response to an impulse applicd to the channel at ¢ — .

In Definition 2.1. the variable 7 represents the propagation delay. From the defimition and

Eq. (2.2.5). the channel output can be represented in terms of the impulse response and the

channe] input by
oc
rit) = j TNy —ridr. (2.2.6)

-
The channel impulse response for the channel with ¥ distinct scatterers is then

N
h{t.1) = Zu”u)e""""”‘&(r — (). (227

a=1

Phase may change more rapidly than Amplitude

27

Time-Variant Transfer Function
Impulse Response

2.2.2 Time-Variant Transfer Function

With the multipath channel characterized us a linear system. the channel behavior can also be
examined in the frequency domain via a Fourier transformation. Time and Irequency bave an
inverse relationship.

Definition 2.2 The time-variant transfer function of an LTV channel is the Fourier transform
of the impulse response. A(z. 1), with respect to the delay variable 7.

Let H{(f, 1) denote the channet transfer function, as shown in Figure 2.6. We have the Fourier
transform pair
o N
H(f. 1) = Frlhit. D] =/ hit. e 1P T dr
-0

S

hr.ty=F; H(f o) = / Hf et 2Ty

-x

where the time variable ¢ can be viewed as a parameter. The received signal can be represented
in terms of the transmitted signal and the transter function as

o0
rn) = / ROf e/, 22.8)
-

where
R(fi)=H(f.HX(f)

and
X(f)r=Flxl.

At any instant. say ! = I, the transfer function H{f. 1) characterizes the channel in the
frequency domain. As the channel changes with /. the frequency domain representation also 28

13



Time-Variant Transfer Function
Impulse Response

7.

1

i) :: H(f.1) ik

RUL0O = UL DX

Figure 2.6 Frequency-time channel representation.

changcs w_llh 7. Therefore. we have the channel time-varying transfer function. 1t the channcl i
lime m\.'urlanl. Fhen the impulse response is a function of the delay varuble 7 and is independent
of the ume variable r: thus the transter function varies only with the frequency variable / und

is independent of ¢. This is consistent with the impulse response and transter function of an 1T}
channel.

29

Small-Scale Multipath Fading

be the amplitude fading and carrier distortion introduced by the channel. The fading characteristics
can be studied by examining the pdfs of the envelope «(f) and phase 8{1) at any time z. The
fading characteristics depend on whether the transmitter and receiver are in line-of-sight or not
in line-of-sight. The former case is called LOS scattering while the latter case is referred to as
NLOS scattering. LOS scatiering has a specular component (from the direct path), and can be
" modeled as a Rician distribution. NLOS scattering does not have a specular component, and can
be modeled as a Rayleigh distribution. A pictorial view of LOS and NLOS scattering is depicted
in Figure 2.21.

NLOS path

LOS path (¢ )e /80

. Transmitter Receiver

Figure 2.21 NLOS versus LOS scattering.

30
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Small-Scale Multipath Fading

*Given a channel with N scatterers, each with gain o,(t) and delay t,(t)
+ Consider a digital transmission with carrier f, and a symbol interval >> At
the delay spread

N
r(t) = Z 0y (r)e“iz"ﬂ'r"(')x(r — (1))

n=1

N
A Zan(r)e_ﬂ”ffz"m x(r —1).

=1

31

Small-Scale Multipath Fading

Let Z(t) = Zc(t) _st(t)

N
Z{1) =) an(t)cosby(1)

N
Z,(t) = _an(t)sinb,(0),

A=l

where 8, (1) = 2mf.t,(t).
Furthermore, let

alr) = JZU0) + 22, 8(t) = tan "' [Zs(1)/ Z.(1)]

32
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2.5 Rayleigh Fading - NLOS

Assume that, at any time ¢, forn =1,2,..., N

a. the values of §,(r) are statistically independent, each being uniformly distributed over
0. 27 }; :

b. the values of a,(r) are identically distributed random variables, independent of each other
and of the 6,(¢)’s.

According to the central limit theorem, Z.(r) and Z(t) are approximately Guussian random
variables at any time ¢ if N is sufficiently large. For simpticity of notation, let Z, and Z; denote
Z.(t) and Z;(t) at any time ¢. It can be shown that Z.; and Z; are independent Gaussian random
variables with zero mean and equal variance ::r:2 = % Z:LI E [a,%], where o, denotes a,(r) at any
time 7. As a resuit, the joint pdf of Z, and Z, is

1 x4 y2
fzez,(x,¥) = Y ) exp|— 57 | —00 <X <00, —00 <Y < 0. 2.5.2)

33

Rayleigh Fading - NLOS

a. the amplitude fading. a, follows a Rayleigh distribution with parameter azz

L]

x x2 ) .
Zexp| -2
) ={a2"P T2 ) *2Y,
0, x <0
with Efor] = o,/7/2 and E{a?) = 203;

b. the phase distortion follows a uniform distribution over [0, 2m],

{
= 0=x<Zn
folx)={ m ;
0, elsewhere
¢. the amplitude fading or and the phase distortion 8 are independent.

The channel is called a4 Rayleigh fading channel.

34
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Rician —LOS Propagation

Rician Fading (LOS propagation). If there exists an LOS path, the channe! gain can be
represented by .-

Zy=Z) = jZ;() + T),
where T'(1) = ag(t)e~ /%" s the deterministic LOS component, and Z(f) — jZ,(r) represents
all the NLOS components. With the LOS component, E{Z(1)] = I'(¢) # 0. The distribution of
the envelope at any time ¢ is given by the Rayleigh distribution modified by

a. a factor containing a non-centrality parameter, and
b. a zero-order modified Bessel function of the first kind.

The resultant pdf for the amplitude fading at any 7, a, is known as the Rician distribution,
given by (see Appendix D) '

2 2
x x oy apx
falx) = 7z exp (—27’?) 'CXP{—Z?I -lo (;3-)

Rayleigh modifier
2, .2
x x°+ay aox
= 0—22 exp (— 2022 ) Io (a_zz) , x>0, v (2.5.5)
35
where «g is ap(f) at any f. u%, is the power of the LOS component and is the non-centrality
parameter, Io(-) is the zero-order modified Bessel function of the first kind and is given by
1 T
Ip(x) = — exp(x cos 0)do. (2.5.6)
2r 0
The Rician fading channel has an important parameter called the K factor. It is defined as
o Power of the LOS component _ o
™ Total power of all other scattered components - Zag' .
As K approaches zero. the Rician distribution approaches the Rayleigh distribution. On the other
hand, as K approaches infinity, only the dominant component matters and there is no fading.
As a result, the wireless channel approaches an AWGN channel. Figure 2.22 shows the Rician
distribution with g, = 1 and various K values. Assuming fp(t) = /2, it can be derived that, at
a given 7, the| pdf of the carrier phase distortion B(r) is given by |
1 1 /K .2
fo(x) = P exp(—K) + 3 —(cos x)exp(—K sin“ x)[1 + erf(ﬁcos x)] 257
k4
for x € [-m, +7], where erf(x) = % i e~ dy is the error function.
36
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Small-Scale Multipath Fading

0.7 T T T T
‘ — K=-=dB
06 Rayleigh i Sy R
—-— K=5dB
0.5 -
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\
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0.1 AR -
N
"~ ~
P ATt IS S DT I \l“‘
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Figure 2.22 Rayleigh and Rician fading distributions with oz = 1.

EEA447
Propagation —
LCR and AFD
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Other Statistics

*The pdfs of the amplitude distortion f (x) and the
phase distortion f,(x) explain how the signal will
behave at each instant in time. They do not tell us
how they change with time.

* We need to know how fast the channel fading
changes with time.

*L CR- The Level Crossing Rate
*AFD- The Average Fade Duration

*LCR and AFD describe the frequency of fading

39

LCR- Level Crossing Rate

Level Crossing Rate

.Deﬁnition 2.3 The crossing rate at level R of a flat fading channel is the expected number
of times that the channel amplitude fading level, a(z), crosses the specified level R, with a positive
slope, divided by the observation time interval.

*R is the chosen threshold

» The observation time is [0,T]
*The number of positive
crossingsis M; =5

* Ng = M; /T = # per second

alt)

1
0 T

t

Figure 2.23 Level crossing rate and average duration of fade

40
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LCR

Ng = Elupward crossing rate at level R]. (2.5.8)

Let & denote the amplitude fading rate, doe(r)/dt, at any time z, and let Jaa (x, ¥) denote the joint
pdf of the amplivde fading o(z) and its derivative a(r) at any time ¢. Then foq(x, ¥}x=g Zives
the joint pdf at the amplitude level R. From the definition, LCR is the expectation of the positive
rate (i.e., @ > 0) and at the level R, which can be expressed by

Ne= [ sfuats. ylleesdy. @59

For the Rayleigh fading environment studied in Subsection 2.5.1, it can be shown that [130]

1 2 2
__(x +3’_)], £20,—c0<y<co,  (2510)

X
L(x, ¥) = ————ex| =
fu’ﬂ( Y) Jﬁ'z P[ 2 0';2 0,2
[+

)
where

z

41

LCR

. Vm is the maximum Doppler shift. Substituting Eq. (2.5.10) into Eq. (2.5.9), the LCR is

4] R 1 R2 2
Ng = y-——cxp[-z(—z+-¥—2)j| dy
0 2nolol 7 O

. 3
=/ () (5
T oo exp o
Letting
R
p=
Vo,

be the normalized threshold with respect to the rms value of « (ie.. ﬁa: ), we have

Ne = inv,pexpi—p7).

42
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LCR

Ng = V21 vlp exp(—p?)

The LCR 1s a product of two terms. The first term, V27 vy, is proportional to the maximum
Doppler shift. Since v, = 1(3 where V is the velocity of the mobile user, £, is the carrier

frequency, and ¢ is the speed of light, LCR is proporticnal to the user speed and the carrier
frequency.

43

LCR

Np=+virv,p exp(’—-p?")

The second term, p exp(—p?), depends only on the normalized threshold. Figure 2.24 shows
how the component changes with the normalized threshold p in dB. It is observed that the
maximum value for LCR occurs at a value of p which is 3 dB below the rms value.

44

21



10°
I T I 1 1 { I

Normaulized level crossing rate, p exp (~p?)

10-4 ! | | 1 I | i ! i
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p(dB)

Figure 2.24 The normalized level crossing rate of the flat Rayleigh fading channel.
The maximum LCR is at p = -3 dB because the pdf of o is maximized at threshold

45

_ AFD- Average Fade Duration

Definition 2.4 The average fade duration at level R is the average period of time for
which the channel amplitude fading level is below the specified threshold R during each fade
period.
Let xz denote the AFD. It is a statistic closely related to the LCR. Mathematically, the AFD
can be represented as

xr = Elthe period that the amplitude fading level stays below the threshold R in each
upward crossing]. )

For the example shown in Figure 2.23, the AFD is ?=1 1;/5. From the definitions of LCR and

AFD, we have

alt)

0
Figure 2.23 Level crossing rate and average duration of fade 46
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AFD- Average Fade Duration

Mt

>

. Mr o=
Ne-xe= N0 =

My
>
= Iim =

T—oo T )
SRR (25.12)

Equation (2.5.12) provides a relationship among the three statistics (i.e., LCR. AFD, and the
cumulative distribution function {cdf) of the amplitude fading «). Thus, if any twe statistics are
known, the third one can also be determined. For the Rayleigh fading environment, the cdf of
ois :

2

x 7
Pla <x) =f Je(y)dy =1 ~exp (___;)_ 25.13)
0 207
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AFD- Average Fade Duration

By Egs. (2.5.11)~{2.5.13), the comresponding AFD is
P(A<R)
R=
Ng
_ 1 —exp(—R?/202)
ﬁ;vm(R/ﬁoz)exp(—Rz/Eo__z)

_ exp(p*) — | ‘
ﬁ;ump . (2.5.14)

48




AFD- Average Fade Duration

exp(p®) — 1

V2T vmp

AR ——

—

The AFD is a product of two components. The first component, |/(+/27 U ). indicates that the
AFD is inversely proportional to the mobile speed and the carrier frequency.

The second term. {exp(p?) — 1]/p. depends only on the normalized threshold p. Figure 2.26
shows how the component changes with the normalized threshold in dB. The value of the AFD
increases dramatically as the threshold p increases much above the rms value. This can be
explained from Figure 2.25. With a large threshold value, it is very unlikely for the amplitude
level o 10 cross the threshold. Therefore, the length of time that « stays below the threshold can
be very long.

49
Knowledge of the AFD value helps to determine the most likely number of bits that may be
lost during a fade. This is useful for relating the received signal-to-noise ratio (SNR) during a
fade to the instantaneous bit error rate (BER).
a
I
q
g
g
g
g
3
N
Q@
g
2
o
S
3
5
b4
- I ! ! 1 ! ! 1 I !
00 8 -6 3 -2 0 2 4 6 [3 10
p(dB) 50

Figure 2.26 The normalized average fade duration of the flat Rayleigh fading channel.
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