

Binary Signals: BPSK- Binary Phase Shift Keying

$$s(t) = (A_c \cos D_p) \cos(\omega_c t) - (A_c \sin D_p) m(t) \sin(\omega_c t)$$

$$pilot Carrier term data term$$
Notice : if $D_p = \frac{n\pi}{2}$ then all the power is in the data term :
pilot = 0 when $h = 1, 2, 3...$
define digital modulation index : $h = \frac{2\Delta\theta}{\pi}$ where $\Delta\theta = D_p$

TABLE 4-1 CO	MPLEX ENVELOPE FUNCTIONS FO	PR VARIOUS TYPES OF MODULATION *		
Type of Modulation	Manning Functions	Corresponding Quadrature Modulation		
	g(m)	x(1)	y(1)	
AM	$A_c[1 \pm m(t)]$	$A_c[1+m(t)]$	0	
DSB-SC PM	$\begin{array}{l} A_c m(t) \\ A_c e^{jD_{p^m}(t)} \end{array}$	$\frac{A_c m(t)}{A_c \cos[D_p m(t)]}$	$O_{A_c}\sin[D_\mu m(t)]$	
FM	$A_{i} e^{jD_{j} \int_{-\infty}^{i} m(\sigma) d\sigma}$	$A_c \cos \left[D_f \int_{-\infty}^t m(\sigma) \ d\sigma \right]$	$A_r \sin \left[D_f \int_{-\infty}^t m(\sigma) d\sigma \right]$	
SSB-AM-SC ^b	$A_c[m(t) \pm j\hat{m}(t)]$	$A_c m(t)$	$\pm A_{\rm c} \hat{m}(t)$	
SSB-PM ^b	$A_{t}e^{jD_{t}[m(t)\pm jm(t)]}$	$A_c e^{\mp D_c \bar{m}(t)} \cos[D_p m(t)]$	$A_c e^{\mp D_p \hat{m}(t)} \sin[D_p m(t)]$	
SSB-FM⁵	$A_{c}e^{jD_{f_{\infty}}^{l}}[m(\sigma)\pm jm(\sigma)]d\sigma$	$A_{c}e^{\mp D_{f}\int_{-\infty}^{t}\vartheta(\sigma)d\sigma}\cos\left[D_{f}\int_{-\infty}^{t}m(\sigma)\ d\sigma\right]$	$A_{c}e^{\mp D_{f}\int_{-\infty}^{t}m(\sigma)d\sigma}\sin\left[D_{f}\int_{-\infty}^{t}m(\sigma)d\sigma\right]$	
SSB-EV	$A_{t} \cdot e^{\{\ln[1+m(t)] \pm j\ln[1+m(t)]\}}$	$A_c[1+m(t)] \cos\{\ln[1+m(t)]\}$	$\pm A_c[1+m(t)] \sin\{\ln[1+m(t)]\}$	
SSB-SQ ^b	$A_{v}e^{(1/2)\left\{\ln[1+m(t),\pm j_{10}] 1+(t) \right\}}$	$A_c \sqrt{1 + m(t)} \cos\{\frac{1}{2} \ln[1 + m(t)]\}$	$\pm A_{c}\sqrt{1+m(t)}\sin\{\frac{1}{2}\ln[1+m(t)]\}$	
QM	$A_{\varepsilon}[m_1(t) + jm_2(t)]$	$A_c m_i(t)$	$A_{\epsilon}m_2(t)$	

Multi-level: QAM and MPSK
<u>MPSK</u> : $g(t) = Ae^{j\theta(t)} = A\cos(\theta(t)) + jA\sin(\theta(t))$
Possible values of $\theta(t)$: $\theta_m = \theta_0 + \frac{360}{M}m$
where $m = 1M$ is the m^{th} symbol corresponding to the m^{th} bit pattern
$\boxed{QAM}: g(t) = R(t)e^{j\theta(t)} = x(t) + jy(t)$
for retangular pulses the k th symbol;
$x_k(t) = A_k \Pi\left(\frac{t}{T_s}\right) A_k = -A + \frac{2A}{\frac{M}{2} - 1}k M = 2^l$
A is the peak voltage of a zero or one for a polar line code
l = 2 for QPSK, $l = 4$ for 16QAM
MONTANA STATE UNIVERSITY Mountains & Minds

	Item	Signal Constellation
Option 2 . DATA rate Modulation	9,600 b/s for high SNR 4,800 b/s for low SNR 16 QAM, 2,400 baud, for high SNR QPSK, 2,400 baud (states A, B, C, D) for low SNR	$\begin{array}{c} \mathbf{y} \\ 0 \\ 1011 \\ 1001 \\ 1001 \\ 1001 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1100 \\ 1001 \\ 100$

S	HAF	NE-F NNC	30L	LOF SF /	F PI	ULS 4 for	E
TABLE 5-8 SPE SH/	CTRAL EFFIC APING (Use M	TENCY FOR 0 1 = 4 for QPSK	QAM SIGNAI (, OQPSK, and	LING WITH RAI $\pi/4$ QPSK sig	JSED COSIN naling)	E-ROLLOFF PU	JLSE
Number of Levels, <i>M</i> (symbols)	Size of DAC, ℓ; (bits)	r = 0.0	r = 0.1	$\eta = \frac{1}{B_{f}}$ $r = 0.25$	$r \left(\frac{Hz}{Hz} \right)$ r = 0.5	r = 0.75	r = 1.0
2	1	1.00	0.909	0.800	0.667	0.571	0.500
4	2	2.00	1.82	1.60	1.33	1.14	1.00
8	3	3.00	2.73	2.40	2.00	1.71	1.50
16	4	4.00	3.64	3.20	2.67	2.29	2.00
32	5	5.00	4.55	4.0	3.33	2.86	2.50
			Copyright 02013 Pearson Educatio	on, publishing as Prentice Hall			
MONTA STATE UNIV	ANA					36.00	

TABLE 5–9	SPECTRAL
EFFICIENCY	OF DIGITAL
SIGN	IALS

 TABLE 5-9
 SPECTRAL EFFICIENCY OF DIGITAL SIGNALS

Type of Signal	Null-to-Null Bandwidth	30-dB Bandwidt
OOK and BPSK	0.500	0.052
OPSK, OOPSK, and $\pi 4$ /OPSK	1.00	0.104
MSK	0.667	0.438
16 QAM	2.00	0.208
64 QAM	3.00	0.313
	Copyright C0013 Presson Education, publishing in Printice Hull	

