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Abstract—This paper presents the flight test results of a
single event upset (SEU) mitigation strategy for computer data
memory. This memory fault mitigation strategy is part of a
larger effort to build a radiation tolerant computing system using
commercial-off-the-shelf (COTS) field programmable gate arrays
(FPGAs) called RadPC. While previous iterations of RadPC
used FPGA block RAM (BRAM) for its data memory, the
specific component of RadPC that is presented in this paper
is a novel external memory scheme with accompanying systems
that can detect, and correct faults that occur in the proposed
data memory of the computer while allowing the computer to
continue foreground operation. A prototype implementation of
the memory protection scheme was flown on a Raven Aerostar
Thunderhead high-altitude balloon system in July of 2021. This
flight carried the experiment to an altitude of 75,000 feet for 50
hours allowing the memory in the experiment to be bombarded
with ionizing radiation without being attenuated by the majority
of Earth’s atmosphere. This paper will discuss the details of the
fault mitigation strategy, the design-of-experiments for the flight
demonstration, and the results from the flight data. This paper
may be of interest to engineers that are designing flight computer
systems that will be exposed to ionizing radiation and are looking
for a lower cost SEU mitigation strategy compared to existing
radiation-hardened solutions.

Index Terms—FPGA, Memory, Radiation

I. INTRODUCTION

The demand for computers that can continue operation
in space environments has increased with the rapid rise of
space exploration missions. One of the leading causes of
deteriorating effects to computers in space, specifically CMOS
devices, is cosmic radiation. While terrestrial computers are
protected from ionizing radiation by the Earth’s atmosphere
and magnetic field, space computers must be designed to
operate in the presence of radiation that can cause logical faults
and potentially crashes [2].

Taking into consideration the classification of the effect
is important when implementing systems targeting resilience

NASA FOP

to the effects of radiation. The two primary classifications
of space radiation are single event effects (SEEs) and total
ionizing dose (TID) — both of which decrease the computer
system’s reliability [3]. A CMOS device experiences an SEE
when high-energy particles strike the device, which in turn,
introduces excess charge in the semiconductor material leading
to inadvertent logic level shifts. From SEEs, we can derive
three subcategories of faults that occur from these logic-level
transitions, each of which cause varying levels of damage
to the device. The first branch of SEEs can be classified as
a single event transient (SET), which occurs when ionized
particles deposit charge onto a region of the device and cause
an unwanted voltage pulse. The second branch of SEEs can
be classified as a single event upset (SEU), which is when
an SET is captured within a storage device such as a D-
flip-flop or memory cell. If either a SET or SEU occur and
introduce a fault that cannot be repaired by conventional
recovery strategies, such as a system reset, a more rigorous
recovery strategy must be implemented. This final branch is
called a single event functional interrupt (SEFI).

A TID effect’s root cause is from low-level energy particles
depositing charge within a device’s insulating regions. This
leads to a gradual breakdown of the insulating material over
time and can lead to unwanted current flow and permanent
transistor biasing. This results in excess power draw and
overall degradation of the device itself. The effects of TID
emerge over time and are irreversible [4].

SEEs are classified as logical faults because they don’t
degrade the material of the semiconductor. However, they can
lead to system crashes during critical times in a mission that
make them lead to catastrophic failure. Our work focuses on
the call for using COTS parts in space missions. While it
has been shown possible to reverse some of the ionizing dose
effects using annealing, it does require specific circuitry to be
included in the device that is not present in COTS parts we
are using. Our focus is on SEEs, not necessarily TID.
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Montana State University has spent the past decade devel-
oping a reconfigurable computing system, denoted ”RadPC,”
that can detect the effects of SEE-induced faults and respond
with a suite of recovery mechanisms [1]. A mission ready
version of RadPC will be sent to the Moon through NASA’s
Commercial Lunar Payload Services (CLPS) project as part
of the Artemis lunar program in 2023.

In preparation for the Lunar mission, the experiment in
this paper serves to validate the RadPC platform in harsh
environments through the means of a high-altitude balloon
flight. This flight targets the system-wide test of the RadPC
architecture, error detection, error recovery, error logging, as
well as an external memory system, all of which will increase
the NASA technology readiness level (TRL) of the RadPC
computer architecture.

II. MOTIVATION

The RadPC platform is designed with the intent of being
a cost-effective space computing solution by implementing its
architecture on commercial off the shelf (COTS) components.
To achieve resilience to cosmic radiation using COTS grade
parts, the design itself integrates radiation mitigation technol-
ogy directly into the architecture. By using COTS products,
the platform avoids the use of expensive products that are
manufactured for radiation tolerance that tend to be cost-
prohibitive for low Earth orbit (LEO) missions.

A traditional method for mitigating TID effects on space
computing is shielding. This is achieved by designing an
enclosure with external metals of varying thicknesses that meet
design tradeoffs including overall system mass versus radiation
resilience [5]. Another widely used technique for mitigating
TID effects is implemented at the fabrication level including
radiation hardening by process (RHBP) and radiation hardened
by design (RHBD). RHBP decreases the probability of a
strike depositing charge within the semiconductor gate by
altering the underlying semiconductor materials [1] [6]. RHBD
achieves a similar end through fabricating components with
non-standard layout geometries that attempt to reroute the
resulting charge from a radiation strike into the power supply
nodes of the circuitry [1] [7]. While both RHBP and RHBD
prove to be effective in the mitigation of the deteriorating
effects of TID and SEEs, they are prohibitively expensive for
most commercial space missions.

In recent years, the smaller processing nodes of CMOS
transistors have resulted in feature sizes (<65nm) that are less
susceptible to TID effects due to the reduced probability of
charge getting trapped in the thin insulating regions. Simulta-
neously the susceptibility of these smaller transistors to SEEs
has increased due to the reduced amount of energy needed to
cause a logic level transition. As a result, SEEs are becoming
the primary concern for future space missions that use modern
semiconductor materials.

Given the rapid increase of space exploration missions being
performed, the need for cost-efficient radiation resilient com-
puting has become a top priority. Montana State University
seeks to satisfy this goal with RadPC. The purpose of this

high-altitude balloon experiment was to test a fault recovery
procedure for external memory in flight computers. The fault
recovery procedure is part of a larger effort at Montana State
University to develop a radiation tolerant computer technology
for use in space. The computer, called “RadPC”, has been
matured over the past 12 years through a variety of flight
demonstrations on various sub-systems. This balloon flight
specifically focused on detecting and correcting errors in
external data memory for RadPC.

III. EXPERIMENT OVERVIEW

The experiment developed consisted of two identical pay-
loads, each containing the RadPC computer, the memory fault
recovery system, and interface electronics to the balloon sys-
tem. The payloads were designed to fly on the Raven Aerostar
Thunderhead high-altitude balloon system. The Thunderhead
Flight Control Unit (FCU) provided DC power to the payloads
and served as a communication bridge to a ground station
where telemetry data could be retrieved during flight. Each
payload was equipped with a Raspberry Pi 4 (RPi) as the
interface between the RadPC computer and the balloon FCU.
The payloads received power from the Thunderhead’s Flight
Control Unit (FCU) which provided a +28VDC power to both
payloads. The payloads interfaced to the FCU via Ethernet
transmission control protocol (TCP) sockets. The system flew
for approximately 50 hours at altitudes between 70,000 feet to
85,000 feet and generated around 20,000 packets of teleme-
try data. Each telemetry packet contained experiment status
information as well as readings of voltages and currents from
the various power supplies (5V, 3.3V, 2.5V, 1.8V, and 1.0V
DC) and temperature. Figure 1 depicts the physical wiring
and communication interface between each RadPC payload
experiment and the Raven Thunderhead FCU. The following

RPi
Payload Interface

RadPC FPGA 
Experiment

UART

Payload 
Power 
(+28V)

Payload 
Comm

(Ethernet)

Fig. 1. Payload Interface to Raven FCU

subsections breakdown each interface into 3 distinct levels,
the payload software interface, the payload hardware interface,
and our ground-station for packet requests and data storage.

A. Software Interface

The software interface implements TCP sockets between
the RPi and the Raven FCU for packet telemetry. The RPi
serves as a interface bridge by requesting and interpreting data
telemetry from the RadPC computer and transmitting them to
the FCU. The FCU then sends the telemetry over the Iridium
satellite network and to a custom data server that acts as our
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ground station. This is achieved by going through Raven’s
provided API. The TCP interface is routed through the RPi’s
on-board Ethernet port.

B. Hardware Interface

The hardware interface implements a RPi daughter card
that serves three primary functions. The first key function is
to regulate the +28VDC input voltage to +5VDC to power
the RPi. The second function is to distribute +28VDC from
the FCU to the RadPC single board computer (SBC). The
RadPC SBC communicates packets via RS422 protocol, which
provides the third key function: to transceive UART protocol
from the RPi to RS422 to the RadPC SBC.

C. Ground-station Server

The ground-station server houses data that gets funneled
from the Iridium comm links through Raven’s Application
Programming Interface (API) and into our server-side data
storage. The ground station server also acts as a data visualizer
that any user can login to and view / plot selected data ranges.

D. Experiment Objectives

The RadPC computer executes identical programs that trig-
ger recovery procedures when a fault is identified. This balloon
flight serves as a relevant environment that the RadPC architec-
ture is targeting development for. As such, it must detect faults
induced by ionized radiation, determine the detected faults ef-
fects on the system, and assert the proper recovery procedure.
The recovery systems report to an external micro-controller
whose primary function is to poll data lines, assemble packets,
and serve as a communication peripheral to the outside world.
The external micro-controller will additionally inject faults
over a serial interface to the Configuration Memory Monitor
(CMM) controller on the FPGA fabric.

IV. RADPC ARCHITECTURE

The existing RadPC architecture employs redundant cores
running synchronous to one another on a Xilinx Artix 7 FPGA.
This approach is an extension of the widely adopted triple
modular redundant (TMR) approach used in space system.
RadPC extends TMR with an additional core (NMR) to
provide increased reliability. The NMR processors run in
conjunction with fault detection and fault mitigation strategies.
Each core contains identical program memories that are mon-
itored via external fault detection strategies. The individual
cores are referred to as tiles for the rest of this paper as they
represent regions that can be reconfigured individually on the
Artix 7 FPGA.

This particular experiment is known as RadPC@Scale and
is an extension of the existing RadPC architecture by adding
additional external memory. Rather than using block RAM
instantiated within the FPGA fabric, the tiles communicate to
four separate Microchip 23LC1024 external data memories
via serial peripheral interface (SPI) protocol. The tradeoff
between using external memory is a slower interface with a
significantly larger capacity. The top-level system architecture

can be visualized in Figure 2. The following sections will
show the abstractions of the RadPC hierarchy. The tiles seen
in Figure 2 are abstracted in the top level architecture. The
Data Memory blocks are external integrated circuit’s (IC) from
the FPGA. The Data Memory Scrubber (DMS) is a state-
machine within the FPGA. The Checkpoint Bus ensures that
the program execution of each tile is synchronous to one
another. When repairing tiles the checkpoint system allows
the repaired core to “catch up” with the other tiles before
resuming foreground operation. The voter subsystem compares
the outputs of the four tiles and asserts a data memory scrub
process if one tile output does not match the other tile outputs.
The DMS walks through memory sequentially and compares
the outputs of all of the tiles and overwrites any tile with
a mismatched memory value to the correct output from the
others. Finally, the CMM is a subsystem that monitors any
single bit flip events in each tiles configuration memory.
Additionally, the CMM can receive commands via serial bus
to inject faults in configuration memory and trigger its repair
mechanisms. Any time a fault has been repaired, it will send
a message over the serial interface to the external micro-
controller that it has repaired a single error in configuration
memory.

Configuration Memory 

Monitor

(CMM)

Voter

Data 

Memory

(512K)

Checkpoint Bus

RadPC FPGA Architecture

 Tile0  Tile1  Tile2  Tile3

Data 

Memory

(512K)

Data 

Memory

(512K)

Data 

Memory

(512K)

Scrub

En

CMM Serial 

Interface

Voter Monitoring 

GPIO

C
lo

c
k

R
e

s
e
t_

n

@Scale External Data Memory – 4 Redundant 23LC1024 1-Mbit SRAM Modules

Scrubber 

Memory

Bus

Scrubber 

Memory

Bus

Scrubber 

Memory

Bus

Scrubber 

Memory

Bus

Tile 

Memory 

Bus

Tile 

Memory 

Bus

Tile 

Memory 

Bus

Tile 

Memory 

Bus

Data Memory Scrubber

Xilinx Artix 7 FTG256 FPGA

Fig. 2. RadPC at Scale FPGA Architecture

A. RadPC Tile Architecture

Figure 3 shows the tile architecture. Each tile implements
a Xilinx Microblaze with program memory, an Advanced eX-
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tensible Interface (AXI) peripheral bus controller, and general
purpose input/output (GPIO) blocks associated with memory
and communication to external devices. The block labelled

 

 Reconfigurable Tile

Digital I/O Peripheral

MicroBlaze 

Processor

Core

Data Memory 

Access

Peripheral 

Bus

Controller

Port1

Checkpoint

I/O

Program 

Memory

RadPC Reconfigurable Computing Tile

Memory 

Controller

Clock

Reset_n

Port2

En

RW

Clk

Data

Memory Bus

Checkpoint Bus

8

8

8

Fig. 3. RadPC at Scale Tile Architecture

’Memory Controller’ is abstracted by each tile and is depicted
in the following section.

B. RadPC Memory Architecture

The memory architecture is a series of control interfaces
that arbitrate between tile memory commands and the data
memory scrubber. During normal operation, the memory re-
sponds to a tile command to read or write to a memory
block. If a fault is detected, the tile repairs the fault using
a scrubbing procedure. Figure 4 depicts the tile memory
architecture where the Memory Controller block is in charge of
the arbitration between tile memory access and DMS access.
Error correction codes are also used to immediately repair
individually faulted bits within data memory. The memory
controller block illustrated in Figure 4 is a finite state machine
that arbitrates between the RadPC@Scale memory requests
and the DMS memory requests. When a command has been
sent to write to the external memory, the memory controller
will shift out the 12-bit hamming encoded word via SPI
protocol. When a read instruction is being executed, the ECC
decoder block will decode the 12-bit word received from the
external data memory and pass back a byte sized data value to
the system that triggered the transaction (DMS or tile). This
creates four separate redundant external memories, one per
tile. When the voter invokes the DMS, the DMS will report
each redundant memory value and repair any mismatched tile
value with the “healthy” value from the majority tiles. Rather
than replicating memory values within a singular DRAM, this
system is replicating memory values from separate tiles over
four separate redundant memory ICs and comparing the inputs
and outputs against one another.

The control signals to read and write to data memory were
through the Xilinx Microblaze AXI GPIO peripheral bus.
When configuring a program within Xilinx Vitis IDE, the

programmer invokes GPIO calls to read and write to external
data memory systems.

The fault injection blocks serve two purposes: a memory
control signal passthrough block when it’s inactive, or a
memory fault injector block when it’s enabled. This block
will enable itself when the input address signal from a tile is
equal to a registered fault address internal to this block. Once
enabled, this subsystem directly modifies the data output from
the tile that is being written to the external memory. This
subsystem lies between the tile and the memory controller
subsystems, and therefore neither the tile nor the memory
controller are aware that a memory fault has been injected into
the value being written. It is only after this memory address
is read from, that the fault is detected by the voter.

V. RESULTS

The RadPC computer assembled data packets on a 10
second cadence. The ground-station server requested packets
on a 5 minute cadence, with each payload offset from one
another. The data plotted in the following figures is the whole
data set that was post-processed after payload retrieval.

A. Packet Structure

Every packet has a 128-byte structure. It begins with a
packet header, then moves into power data for each voltage
rail. After the power data, it logs pertinent FPGA data. The

TABLE I
RADPC TELEMETRY PACKET STRUCTURE

Field Length Field Description Packet
(bytes) Location

24 Packet Header 0-23
3 Packet Number 24-26
4 1.0V Power Rail 27-30
4 1.8V Power Rail 31-34
4 2.5V Power Rail 35-38
4 3.3V Power Rail 39-42
4 5.0V Power Rail 43-46
4 28.0V Power Rail 47-50
2 MCU Temperature 51-52
2 FPGA Temperature 53-54
2 FPGA Tile Count 55-56
1 FPGA Voter Outport 57
1 FPGA Port In (Unused) 58
8 Tile Fault Count 59-66
2 CMM Fault Count 67-68
8 Tile Injection Count 69-76
2 CMM Injection Count 77-78
8 Tile Checkpoint Lags 79-86
8 Tile correctable Faults 87-94
8 Tile Uncorrectable Faults 95-102
2 CMM Correctable Faults 103-104
2 CMM Uncorrectable Faults 104-105
2 MEM Error Correction Codes 106-107
6 MEM Scrubber Outputs 108-114
2 Mission MCU Reset Count 115-116
1 Last Communication Request 117
6 Reserved 118-123
2 CRC Codes 124-125
2 End Packet Symbol 126-127

primary data fields this paper will discuss from Table I are the
power monitors, temperatures, Tile Fault Counts, CMM Fault

Authorized licensed use limited to: Montana State University Library. Downloaded on August 01,2024 at 21:30:44 UTC from IEEE Xplore.  Restrictions apply. 



RadPC@Scale Memory Architecture

 RadPC 

Tile

Data 

Memory 

Scrubber

Data 

Memory

(512K)

Microchip 

23LC1024

ECC

Memory 

Controller

ECC

Enc

Data

Scrub Mem En

Scrub Mem RW

Scrub Mem Addr

Scrub Mem wData

Scrub Mem rData

Periodic

Fault Injector

Tile 

wData

Data Mem

rData

MOSI

MISO

CSn

SCLK

Tile Mem En

Tile Mem RW

Tile Mem Addr
Tile Mem rData

Fig. 4. Simplified tile memory architecture.

Counts, CMM Injection Counts, CMM Correctable Faults,
MEM Scrubber Outputs, and Mission MCU Reset Counts.

B. FPGA Data Plots

This section depicts all data fields related to the FPGA
computer during flight. It is divided into subsections relevant
to different data fields. Payload 1 and Payload 2 exhibited
functionally equivalent operation, as such, the data for both
payloads is nearly equal. Therefore, the digital data pertaining
to the RadPC@Scale tiles will only be shown for Payload 1.

500 5000 10000 15000 20000
Packet Number

0

100

200

300

400

500

600

700

800

Fa
ul

ts
 D

et
ec

te
d

Tile 0
Tile 1
Tile 2
Tile 3

10550 10600
382

384

386

Fig. 5. Payload 1 - FPGA Tile Fault Counts

1) FPGA Fault Injection Detection: It can be seen in the
exploded view highlighted by the blue box in Figure 5 that
the fault counts increment in a round robin fashion. This
is implemented by design and begins with a fault injection
on Tile 0, then Tile 1, and so on and so forth. The fault
injection block stands between the tile memory control signals
and the memory controller, depicted in Figure 4. Due to the

inherent design of the fault injection, the system did not
detect any external radiation faults. If it did, there would have
been additional offsets between the number of faults detected
between tiles.
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Fig. 6. Payload 1 - RadPC Power Monitoring

2) Power Monitoring: The RadPC Computer implements
an analog-to-digital conversion (ADC) measurement scheme
for monitoring the voltage supplies. The computer has 5
voltage rail supplies that feed the downstream FPGA and
MCU. Notice in Figure 6 that the voltage rails follow the
desired voltage levels. The original current data for the power
plots was incredibly noisy, so in post-processing, a moving
average filter was applied with a window width of 32. Similar
to the power plots from Payload 1, Payload 2 behaves in a
similar manner. The power monitoring shows that the payloads
were in good health during flight.

3) Data Memory Scrubber: This section depicts the data
memory scrubber values throughout the flight duration. The
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Fig. 7. Payload 1 - Data Memory Scrubber Data Logs

data scrubber data depicted in Figure 7 are the accumulations
of each time the voter system triggered a data memory scrub.
The number of scrubs is modeled by the following equation.

S = F1 + F2 + F3 + F4 (1)

Where S is the number of scrubs that has occurred, and Fx

is the accumulated faults on any given tile x. Notice that in
Figures 5 and 7 that faults did not begin to be introduced
until around data packet 500. This was by design as Raven
flight operations crew incorporate tests for the balloon launch
that include repeated power cycling of the payloads. To avoid
data offsets that needed data post-processing due to the flight
operations power cycles, a delay of 20 minutes was introduced
to begin injecting faults.

4) FPGA CMM: Recall the CMM IP can receive com-
mands via a serial interface to inject errors. The foundation of
this IP is to both manually inject faults and detect faults caused
by external radiation and then recover from these faults. As
denoted on Figure 8, the injections, faults detected, and faults
recovered were all detected by our monitoring MCU at the
same time and are all overlaid onto one another. Due to the
faults detected being the same as the faults injected, it can be
seen that there were no faults caused by cosmic radiation.

Over the course of the 50 hour flight, the memory exper-
iment injected 2836 faults and successfully recovered from
each one.

VI. CONCLUSIONS

The experiment carried out with the payloads presented
in this paper, named RadPC-at-Scale, has demonstrated the
performance of a cost-effective, commercial off-the-shelf, ra-
diation tolerant space computing system. Through its suite of
fault detection and mitigation strategies, it has shown that it
will perform under harsh space environments by recovering
from faults, injected or induced by radiation. While this flight
has shown that there were no faults induced by radiation onto
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Fig. 8. Payload 1 - CMM Data

the payloads, the RadPC architecture still maintained healthy
operation as depicted by the data packets shown above.

The system did not detect any external radiation faults due
to the rapid rate at which faults were injected onto the system.
For this flight, a fault was injected once every 50 seconds onto
a singular tile’s data memory in a round-robin fashion. When
a fault was detected by the voter, the voter would then repair
the entire external data memory space across all four tiles.
When combining the rapid fault injection, the voter detection
and repair mechanisms, this effectively filtered out any faults
induced by radiation within the external 23LC1024 SRAM
memory devices. To remedy this for the next experiment, the
fault injection will be limited to a period of 12 hours. This
will allow the system to recognize the fault injection period
and interpret whether a detected fault is caused from external
radiation or from the memory fault injector block.
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