
Cyber Shield:
An approach to defeat malware in edge
computers using hardware diversity.

Authors: Colter Barney, Tristan Running Crane, Clemente Izurieta, & Brock LaMeres
BU / Org: Montana State University
POC Email: lameres@montana.edu

Raytheon Sponsor: Jay Lala, Sr. Principal Engineering Fellow
BU / Org: RMD
Email: jay_lala@raytheon.com
Date: 11/3/2022

• Inserting malicious code into
the computer’s program
memory and tricking the
processor into executing it.

2

Malware Focus

Types of Cybersecurity Attacks

• The nation’s cyber
infrastructure consists of a
massive number of identical
computer systems.

• This homogeneity is
advantageous because a
single piece of software can
be deployed across millions
of systems to increase
capacity.

The Malware Cybersecurity
Challenge

Background

However, this gives an
attacker a significant

advantage in terms of effort
relative to system defenders

by re-using their attack across
numerous systems.

4

• 25 Billion Computers• 1.5 Billion sold in 2018• 400 Million sold in 2018

Personal Computers Smart Phones Embedded Computers

The attacker’s advantages become greater as we move to
Embedded Computing.

Embedded Computers need Protection from Cyber Attacks as well

• Homogenous hardware give attackers of embedded systems advantages
when injecting code.

• These attacks can be defeated by using Heterogenous hardware, but at the
loss of single architecture development.

Hardware Diversity

5

Our Approach

• Hardware is fixed and takes
months/years to fabricate.

• There has been some prior
work in the area of
randomization of instructions
sets in Virtual Machines, with
promising results.

6

Hardware Diversity

Our Approach

• Dedicated software, not general-purpose.
• Smaller (sometimes 8-pin packages)
• Lower Clock Frequencies (1MHz - 16MHz)
• Smaller memories

(256k to 1M)
• Often no OS other than

real-time scheduler.

7

Embedded Computer Characteristics

Our Approach

Radar
(Left: RMD GhostEye® Radar, Right: RMD SPY-6)

Missiles
(Left: RMD SM-6, Right: RMD Patriot)

• The scripts that alter the HDL
design can be executed as
part of the code generation
from a C compiler

• Once an embedded
computer is designed in HDL
scripts can be written to
create alterations of the
computer.

• Field Programmable Gate
Arrays (FPGAs) allow
hardware to be designed
using a Hardware Description
Language (HDL)

8

FPGA Design Diversification Compile Time Diversification

Our Approach (FPGAs!)

Once we control the HDL generation, we can make modifications to the design & and even replicate
it.

9

Our Approach (Three Cores)

Synthesis /
Implementation

HDL
Generation

Scripts

The three cores share input ports, meaning they cannot be individually targeted

10

Our Approach (Under Attack)

Synthesis /
Implementation

HDL
Generation

Scripts

A Malware attack will insert
execution binaries into each of
the 3x cores’ program memory

on the FPGA.X

But since the attacker compiled
the malware for the publicly-

available Baseline computer’s
opcodes, it is the only one that

executes the malware.

The processors
with randomized
opcodes don’t
recognize the

malware.

We can either
throw an

exception or run a
pre-defined

routine to remove
the malware.

The computers
with randomized
opcodes don’t
recognize the

malware.

We can either
throw an

exception or run
a pre-defined

routine to remove
the malware.

But how do we map the original source code opcode assignments used by the compiler into the
two heterogenous cores?

11

Our Approach

VHDL Files

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

HDL Description of 3x Computers &
Attack Detect Voter

Opcode Def 1

Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3 Their format is
defined, but the

files don’t yet exist.

We define the VHDL
file hierarchy

describing the 3x
computers to have

separate instances for
Program Memory and
Opcode Definitions.

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

We want to start the
software development

using a standard tool flow.

(i.e., main.c, standard
development environments)

The output of the
compiler is the

machine code using
the Baseline Computer
Opcode assignments.

Machine Code
(object file)

Disassembly

Baseline
Computer

Opcode
Translator

An Opcode Translator
can parse the Baseline

machine code and put it
into a VHDL form.

The translator creates two
VHDL files to describe the

Program Memory &
Opcode Definition.

The Opcode Definition is
provided as a VHDL Package.

Since the translator has already parsed
the Opcode fields, it is simple to

reassign their binary instruction codes.

Opcode
Randomization

Scheme The translator produces
VHDL files for the

Program Memory &
Opcode Definition for the

other two computers.

The translator produces
VHDL files for the

Program Memory &
Opcode Definition for the

other two computers.

The synthesis step creates 3x, functionally-
equivalent, heterogeneous computers running
the same software, just with different Opcode

assignments.

Since the different Opcodes alter the control
unit synthesis, it results in different hardware.

12

Testbed for Demonstration

Opcode
Translator

VHDL Files

FPGA
Core 1

Core 2

Core 3

Attack
Detect
Voter

Synthesis
&

Implementation

Malware Resistant
Computer

FPGA
Design Tools

Processor 1

Program
Memory 1

Attack
Detect
Voter

Source Code
(main.c)

Compiler
Processor
Definition

(header file)

Machine Code
(object file) Opcode Def 1

Disassembly Processor 2

Program
Memory 2

Opcode Def 2

Processor 3

Program
Memory 3

Opcode Def 3

Opcode
Randomization

Scheme

Standard Eclipse Programming Environment
Supporting C and Assembly.

Targeting a widely-used Microcontroller, the
MSP430. A 16-bit RISC processor.

Testbed program (main.c) to
keep a missile upright

Custom Python / JAVA Script code.

We built a fully functional MSP430 in
VHDL from the TI datasheets. We used Matlab Simulink

HDL Coder to generate
the VHDL from a

graphical/functional
description.

The entire control unit is described
as a graph and then converted into

VHDL by the HDL coder toolbox.
We used the intel Quartus

FPGA design tools.We used the DE0-CV
FPGA board with an intel

Cyclone V FPGA.

13

Demonstration Under Attack

Stepper motor for control

Functionally Equivalent Systems
“MSP430 vs. CyberShield”

Both running closed-loop control code to
keep missile upright and accepted setpoint

angles over UART.

Functionally Equivalent Systems
“MSP430 vs. CyberShield”

Both running closed-loop control code to
keep missile upright and accepted setpoint

angles over UART.

Angle sensor

UART for angle setpoint
(47° or 61° or 79°,

14

Demonstration Under Attack

The computer periodically sends the stepper motor its
setpoint angle. The send frequency is dictated by a

timer that triggers and interrupt.

The computer continuously reads the actual angle of
the missile from the sensor and compares it to the

setpoints. It adjusts motor accordingly.

New setpoints are received asynchronously from a user
over UART. A Rx on the UART link triggers an IRQ.

Program Description

15

Demonstration Under Attack
Program Vulnerabilities

(Classic Buffer Overflow Attack)
Address
x2000

x3000

Global
Variables

Stack

Data Memory

decode_array

frequency
set_angle
rx_index
RXBUF
index

ISR Return Addresses

Local Variables

1. When user sends new
setpoint over UART, an

IRQ triggers, stacks return
address, and retrieves new

value for RXBUF.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

2. But the developer
introduced a vulnerability
by adding a delay loop in
the main program to allow

the UART to complete
before resetting the input

buffer size back to 0.

3. This allows the attacker
to stream in malicious
code and replace the

correct ISR return address.

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr

NOP
NOP
NOP

Malware
Malware
Malware
Malware

MSP430 Attack – How it looks in data memory…

16

Demonstration Under Attack

The vulnerability

UART ISR Return Address

What the attacker is after

UART ISR Return Address

The vulnerability

The Inserted Malware

A NOP Sled is used so that
the exact ISR return

address isn’t needed.

The same attack made on our system

17

Demonstration Under Attack

Address
x2000

Data Memory

x3000

decode_array

frequency
set_angle
rx_index
RXBUF
index

Global
Variables

Stack

ISR Return Addresses

Local Variables

NOP
NOP
NOP

Malware
Malware
Malware
Malware
NOP
NOP
NOP

New ISR Return Addr
The Malware Still Gets Inserted

via Buffer Overflow

But as soon as the starts reading the inserted
code in the CPU, it detects that all opcodes are

the same!!!
NOP

18

Demonstration Under Attack

We can see how CyberShield Responds by
Measuring the Instruction Registers in the

CPU with a Logic Analyzer.
All Opcodes are Different

by Design

CyberShield Halts Operation and
Initiates a Recovery Procedure.

The attack is detected when all three
CPUs see the same Opcode.

After flushing out the malware, CyberShield
resumes normal operation.

The rapid nature of hardware recovery allows low
latency and the ability to operate-through-attack.

19

Demonstration Under Attack

The attack is detected when all three
CPUs see the same Opcode.

CyberShield Halts Operation and
Initiates a Recovery Procedure.

CyberShield Halts Operation and
Initiates a Recovery Procedure.

After flushing out the malware, CyberShield
resumes normal operation.

All Opcodes are Different
by Design

• CyberShield is an approach to defeating malware by introducing hardware
diversity at the hardware level.

• This is enabled by real-time HDL generation at compile-time.
• A buffer insertion attack was used to test CyberShield.
• CyberShield was able to detect the malware, remove it, and continue

operation while an MCU was not.

20

Conclusion

Questions

21

	Slide Number 1
	Types of Cybersecurity Attacks
	Background
	The attacker’s advantages become greater as we move to Embedded Computing.�
	Our Approach
	Our Approach
	Our Approach
	Our Approach (FPGAs!)
	Our Approach (Three Cores)
	Our Approach (Under Attack)
	Our Approach
	Testbed for Demonstration
	Demonstration Under Attack
	Demonstration Under Attack
	Demonstration Under Attack
	Demonstration Under Attack
	Demonstration Under Attack
	Demonstration Under Attack
	Demonstration Under Attack
	Conclusion
	Questions

