Rotational Speed (RPM's)

 $N = \frac{V}{\pi D}$ N = Rotational Speed (RPM's) v = Cutting Speed (SFPM) D = Cutter Diameter

Feed Rate: f_r (^{Dist}/_{Min})

 $\begin{aligned} f_r &= N \ n_t \ f \\ n_t &= Reed \ Rate \ (^{Dist}/_{Min}) \\ N &= Rotational \ Speed \\ n_t &= Number \ of \ Teeth \ on \ the \ Cutter \\ f &= Feed \ (^{In.}/_{Tooth}) \end{aligned}$

Approach Distance : Peripheral Milling

 $A = \sqrt{d(D-d)}$ A = Approach DistanceD = Cutter Diameterd = Depth of Cut

Approach Distance : Face Milling

$$A = O = \frac{D}{2}$$

$$A = Approach Distance$$

$$O = Cutter Run Out Distance$$

$$D = Cutter Diameter$$

Machining Time : Peripheral Milling

 $T_{m} = \frac{L + A}{f_{r}}$ $T_{m} = Machining Time (Min.)$ L = Length of Cut A = Approach Distance $f_{r} = Feed Rate (Dist./Min.)$

Machining Time : Face Milling

 $T_{m} = \frac{L + A + O}{f_{r}}$ $T_{m} = Machining Time (Min.)$ L = Length of Cut A = Approach Distance O = Cutter Run Out Distance $f_{r} = Feed Rate (Dist./Min.)$

Material Removal Rate (in.cu./Min.)

 $MRR = w d f_r$

MRR = Material Removal Rate (^{cu.in.}/_{Min}) w = Width of Cut d = Depth of Cut $f_r = Feed Rate (^{Dist.}/_{Min})$

Data: D = 4.500"; d = 0.250"; w = 1.750"; f = 0.0005 ⁱⁿ/_{tooth}; v = 128.5 SFPM; n_t = 20 teeth

Approach Distance

$$\mathsf{A} = \sqrt{d(D-d)}$$

$$A = \sqrt{0.250(4.500 - 0.250)}$$

A = <u>1.0308</u>"

 $\frac{Machining Time}{L + A}$ $Tm = \frac{L + A}{f_r}$ $Tm = \frac{7.000 + 1.0308}{1.0907}$

Tm = <u>7.3607</u> Min

Material Removal Rate

 $MRR = w d f_r$

MRR = (1.750) (0.250) (1.0907)

MRR = <u>0.4772</u> ^{cu.in.}/_{min}

Data: D = 0.625"; d = 0.375"; n_t = 6; f = 0.0015 ⁱⁿ/_{tooth} ; v = 100 SFPM

Approach & Over Travel Distance

$$A = O = \frac{D}{2}$$
$$A = O = \frac{0.625}{2}$$
$$A = O = \frac{0.3125}{2}$$

<u>Machining Time</u>

$$Tm = \frac{L + A + O}{f_r}$$

$$Tm = \frac{5.500 + 0.3125 + 0.3125}{5.500 + 0.3125 + 0.3125}$$

5.5004

Tm = <u>1.3863</u> Min

Material Removal Rate

 $MRR = w d f_r$

MRR = (0.625) (0.375) (5.5004)

 $MRR = 1.2892 \text{ cu.in.}/_{min}$