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Abstract—The ability to recognize a gunshot has significance in
reinforcing public safety, assisting in crime scene investigations,
and preventing gun violence. This paper investigates the efficiency
of various machine learning models for gunshot recognition. We
present a model to identify the type of pistol or rifle discharged by
analyzing only an audio signal of the gunshot. Among the array
of methods explored, AdaBoost performed the best achieving an
accuracy of 99.9% and sustaining over 80% accuracy with 40 dB
conditions. Additionally, we experimented with the importance
level of the features to identify the most relevant variables that
boost the performance of the algorithms.

Index Terms—gunshot recognition, adaboost, ensemble, gaus-
sian noise, feature selection

I. INTRODUCTION

Public safety is a significant issue across any city around the
globe. To ensure quick response by law enforcement authorities,
a reliable and realistic gunshot detection system is necessary.
To speed up the investigation process, a crime scene must be
understood and the authorities should have the ability to recreate
the scene. A robust gunshot recognition system will become
useful by aiding in the crime scene reconstruction, estimating
the shooter’s position and the trajectory of the projectile, and
verifying the details provided by witnesses.

Audiovisual surveillance systems are becoming more popular
with the increase in crime. ShotSpotter [1] is a gunshot
detection system in the SafetySmart platform introduced
by SoundThinking. ShotSpotter is used by law enforcement
agencies by strategically placing a network of audio and video
sensors in city areas. The system captures all the surrounding
sounds; if it detects any gunfire sounds, it triangulates the
location and alerts the proper authorities. The system collects
and analyzes the data to create a map of areas prone to gun
violence. However, the system does not give information about
the gun used for the violence and may raise false alarms for
sounds like car backfires or fireworks.

Most of the research on gunshot detection systems uses
training data either from a very controlled environment using
multiple microphones or a traditional recording device [2]. This
type of data usually contains spectral information only, and thus
several pattern recognition approaches are used to implement
gunshot detection systems without any spatial information. The
input time domain signal is usually divided into multiple short-
windowed frames and some widely used features—such as Mel-
Frequency Cepstrum Coefficient (MFCC), Linear Prediction
Coefficients (LPC), Linear Prediction Cepstral Coefficients

(LPCC), and temporal features—are extracted. The features
are then merged and fed into different classification models for
gunshot detection. [3, 4] proposed a hierarchical classification
method using the Gaussian Mixture Model (GMM), whereas [5]
proposed a Hidden Markov Model (HMM) with autoregressive
source densities using a nonparametric Bayesian technique-
to classify gunshots. Integrating power spectral density with
MFCC emerged as a promising feature array for gunshot
detection in noisy environments [6]. Kiktova et. al. in [7]
suggested a combination of a Hidden Markov Model (HMM)
and Viterbi decoding algorithm to recognize gunshots collected
in an urban environment. A Viterbi algorithm finds the
candidates with the maximum likelihood of the hidden states in
a HMM. A combination of MFCC, LPC, Gammatone cepstral
coefficients, and spectral centroid are used in [8] as features for
bagged tree ensemble and support vector machine classifiers.
Different SNR settings were also tested in this work and the
arrival time difference is considered to localize the firearm.

Convolutional Neural Networks (CNN) [9] and transfer
learning methods [10] have become popular in recent times
for gunshot detection, enhancing classification and localization
of the firearm. [11] proposed a wireless gunshot recognition
algorithm referred to as EfficientNetTime, a lightweight deep
learning model that leverages 1D convolution network and
knowledge distillation. The name EfficientNetTime received its
name because it reduces the computational cost of convolution.
[12] introduces a low-cost and high-accuracy gunshot detection
system using a Raspberry Pi. Morehead et al. deployed both
1D and 2D CNNs for training the model using spectrograms as
features. The performance of the 2D CNN is slightly better than
the 1D CNN. MFCC of gun sounds collected from YouTube is
used in [13] to create new ensemble features utilizing a Discrete
Wavelet Transform Random Forest Probabilistic (DWT-RFP)
approach, which was then fed to a meta-learner referred to as
Meta-RF-KN (MRK). [14] explored several established deep
learning models such as Inception-ResnetV2, Inception-V3,
YOLOv4, VGG16, etc. for weapon detection from CCTV
cameras. Self-attention-based transformer architectures and
convolutional neural networks are experimented in [15], with
the transformer learning model performing better.

In this work, we explored different machine-learning models
for recognizing gunshot data for pistols and rifles. We experi-
mented with the robustness of the algorithms by introducing
noise to the data and lastly reduced the computational cost
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Fig. 1. Gunshot Generator App built with MATLAB. First load the recorded
data, then enter the parameters: temperature, gun height while recording,
sampling rate of the recording, target or microphone position (x, y, z), and
reflection rate of the surface. Then hit ’plot result’ to generate the data at your
desired azimuth and reflection rate. The generated data considers the echoes
and displays the delayed signal.

by utilizing only the important and relevant features without
affecting the optimal performance of the models. First, we take
a peek at the unique dataset used in this work in Section II.
Then, section III discusses three different machine learning
algorithms briefly that are used in this work, followed by
the effect of adding noise to the data and performing feature
selection techniques. Section IV illustrates the performance
evaluation of the algorithms for various instances. Finally,
section V wraps up the work with an overall summary.

II. A UNIQUE DATASET

Most of the research in gunshot classification uses recordings
from YouTube or sound effects from libraries rather than the
true-to-life high-quality recordings we have available. Since
the muzzle blast sound is only 3-4 milliseconds in duration,
researchers who train with reverberant recordings hundreds of
milliseconds or more in length are learning more about the
acoustical impulse response of the location where the recording
was made than they are about the sound of the gun itself.
Synthetic data using a geometric approach is generated utilizing
quasi-anechoic recordings [16] from three different firearms: a
Glock-19 pistol, an AR15 rifle, and a 308R rifle. The audio
was sampled at 500 kHz to obtain the supersonic sound waves.
Ten shots from each gun were recorded using 12 different
microphones. We generate a unique data set considering a
single-ground reflection, different azimuths, and simulated
distances that represent a more realistic and comprehensive
set than the typically limited scope of gunshot sounds often
available. Fig 1 illustrates the data generator app built using
MATLAB and an example generated signal for Glock-19. The
high-quality anechoic recordings were used to generate 12100
samples of synthetic data for each of the firearms. The data
was split 80-20 for the train and test sets, and a 5-fold cross-

validation was performed on the training data. The training
and validation samples total up to 29040, while 7260 samples
are used for testing.

From the gunshot data, 19 features are extracted. These
features encompass a broad spectrum of characteristics, in-
cluding MFCC with 13 coefficients, spectral spread, spectral
flatness, spectral entropy, spectral skewness, harmonic ratio, and
kurtosis. MFCC is a widely used audio feature that encapsulates
the short-term power spectrum. Spectral spread measures the
width of the spectrum across the frequencies and how the
energy is distributed, while spectral flatness examines the
uniformity of the energy levels across the bandwidth. The
spectral entropy gauges the degree of uncertainty in the spectral
energy distribution based on the principles of Shannon entropy.
Spectral skewness delves into the asymmetry of the power
spectrum and is the third standardized moment of the power
spectrum, while harmonic ratio discerns the ratio of harmonic
to non-harmonic components in the signal. Lastly, kurtosis
expresses the flatness or peakedness of the power spectrum
and is the fourth standardized moment of the power spectrum.

III. ANALYSIS

A. Models Used

Numerous machine learning and deep learning models have
been proposed for gunshot recognition in audio forensics.
This section explores a few state-of-the-art models and the
hyperparameter optimization of the models.

1) Ensemble Classifiers: Ensemble learning is a machine-
learning approach that combines multiple base models to
improve performance and prediction capability [17]. Instead
of relying on the predictions of one single model, ensemble
learning techniques leverage the collective predictions to decide
on a final prediction. Bagging [18], Boosting [19], and Stacking
[20] are three main variations of ensemble learning. Any
machine learning model can be used for ensemble learning,
however, in this section, we will consider a decision tree as
the base model for ensemble learning. Bootstrap Aggregating
or Bagging in short involves training several decision trees
of randomly selected subset of the data, and either averaging
or voting on the predictions of all the trained models. As an
example, let X be the input data and Y be the target variable,
and the set of the data with n subsets is

(X1, Y1), . . . , (Xn, Yn)

For each decision tree model Ti, each Xi is trained to obtain
the predictions Yi. The final prediction is then averaged as:

Yensemble =
1

N

N∑
i=1

Yi

Boosting is the process of sequentially training several weak
learners focusing on the mistakes of the previously trained
models. The goal is to build a strong learner by learning from
the mistakes of all the weak learners. The final prediction is a
weighted combination of all the predictions, where the weak
learners performing better are assigned a higher weight. On
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the other hand, stacking uses a meta-model (usually a different
higher-level machine-learning model) to train on the predictions
of the base model to obtain the final prediction.

2) Support Vector Machines: Support vector machine (SVM)
is a versatile tool for classification or regression tasks. SVM
finds a hyperplane leveraging the support vectors in an N-
dimensional space that best separates the data points of different
classes. The support vectors define the boundaries to the closest
data points and the hyperplane [21]. The goal of SVM is
to maximize the boundary and various kernels are usually
deployed for non-linear data. To simply explain the SVM, the
classifier can be expressed as:

hw,b(x) = f(wTx+ b)

where x is the feature vector, y are the labels, w is the
weight vector, b is the bias, f(z) = 1 if z ≥ 0, and f(z) =
0 otherwise. The optimal margin can be obtained by minimiz-
ing the weight vector.

minw,b
1

2
||w||2

s.t. yi(wTx+ b) ≥ 1, i = 1, . . . , n

SVM is generally a two-class model. However, the algorithm
can be extended for multiclass via the one-vs-one or one-vs-
rest method. The one-vs-one approach trains a binary classifier
for each of the pairs of the classes, while one-vs-rest trains
separate binary classifiers for each of the classes.

3) Neural Networks: A neural network is a machine-learning
process inspired by the connections of neurons in the human
brain to learn the complex patterns in a given data. Neural
networks consist of three main layers: input, hidden, and output
layers [22]. The hidden layers can be fully connected and have
a weight matrix W and biases b. As an example, the fifth
neuron in the third layer can be computationally defined as:

z
[3]
5 = W

[3]
5

T
x+ b

[3]
5 and σ

[3]
5 = g(z

[3]
5 )

Here, g(z) is the activation function that determines whether a
neuron should be activated or not. Based on the applications,
and the number of layers and connections between the neurons,
neural networks can get very complex with an enormous
amount of parameters.

4) Hyperparameter Tuning: The hyperparameters of any
machine learning model need to be tuned for optimal perfor-
mance and generalization. The process of trying out different
parameter settings iteratively based on a specific target variable
to determine the performance level of the model in that specific
setting is referred to as hyperparameter tuning. Mathematically
hyperparameter optimization [23] can be represented as:

x′ = argmin
x∈X

f(x)

Here, x′ is the set of tuned hyperparameters, x can be any
value from the space X while f(x) id the objective function
that needs to be minimized. The hyperparameter varies based

on the models used, such as learning rate, kernel type, number
of learners, number of layers and neurons, regularization
strength, etc. After the variable parameter bounds are set,
various algorithms can be utilized for the tuning. Some of
the common hyperparameter tuning algorithms are grid search,
random search, and Bayesian optimization [23]. Grid search
takes all the possible combinations of the parameters into
account and thus is very tedious and computationally expensive.
As the name implies, random search randomly selects a group
of hyperparameters for each iteration. On the contrary, the
Bayesian optimization algorithm is based on Bayes’ theorem
using a probabilistic approach to steer the hyperparameter
search.

B. Adding Gaussian Noise

White Gaussian noise, also known as white noise or Gaussian
noise, is a simple noise model with a flat frequency spectrum
across the entire bandwidth and follows a Gaussian distribution
[24]. Adding Gaussian noise to the input data helps in
mimicking real-world conditions and makes the model more
robust towards the tasks assigned. Adding the noise to the
data is a form of augmentation, that exposes the model to
diverse input situations. Additionally, introducing noise helps
in generalizing a model better to unseen data.

C. Feature Selection

Feature selection is the process of selecting a subset of
the features based on their importance on the performance
of a machine learning model. This technique reduces the
dimensionality of the data and computational costs and speeds
up the training process while maintaining optimal performance.
Feature selection can be categorized into three main types:
filter type, wrapper type, and embedded type [25]. Filter-
type feature selection uses statistical measures such as feature
variance and feature relevance to measure the importance of
the features. This method can be considered as a part of the
data preprocessing step and is not related to the training model.
A wrapper-type feature selection algorithm uses a subset of
features to evaluate the performance of a pre-selected model
and continues training iterations until the stopping criteria are
met. The importance of the features is directly obtained during
the model training phase in the case of embedded-type feature
selection algorithms. All the feature selection algorithms find a
relevant set of features and can be applied to either numerical
or categorical features.

IV. RESULTS

This section elaborates on the experimental results of
different machine learning algorithms and evaluates their
performance in optimized settings, added noise, and with a
subset of features.

A. Optimized Hyperparameters

We have used ensemble classifiers, support vector machines,
and shallow neural networks for the machine learning anal-
ysis. The models are also hyperparameter-tuned for optimal
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Fig. 2. Minimum Classification Error plots. The legends are Estimated min classification error, Observed min classification error, Bestpoint hyperparameters,
and Minimum error hyperparameters. The plots are for (a) ensemble classifiers, (b) support vector machines, and (c) neural networks.

Fig. 3. Confusion Matrices for (a) ensemble classifier, (b) support vector machine, and (c) neural network. Note, that the models are hyperparameter optimized
and report the confusion matrix on the unseen test set for each of the models.

performance. We used a Bayesian optimization algorithm for
hyperparameter tuning with 30 iterations. The hyperparameter
search range for ensemble classifiers was: ensemble methods
= Bagging, AdaBoost, RUSBoost, number of learners = 10-
500, learning rate = 0.001-1, and maximum number of splits
= 1-29039. The optimized parameters include the AdaBoost
ensemble method, with 14 learners, a learning rate of 0.8793,
and a maximum number of splits of 145. For the support vector
machine, the hyperparameter search range was: multiclass
method = one-vs-all, one-vs-one, box constraint level = 0.001-
1000, kernel scale = 0.001-1000, and kernel function =
Gaussian, Linear, Quadratic, Cubic. The optimization results
favor for one-vs-one multiclass method with a Gaussian kernel
function, a box constraint level of 329.5042, and a kernel
scale of 5.2877. The neural network was optimized within the
following hyperparameter spaces: number of fully connected
layers = 1-3, activation function = ReLU, Tanh, Sigmoid, None,
regularization strength = 3.4435e-10-3.4435, and layer sizes
= 1-300. The optimized neural network has 1 fully connected
layer with Relu as the activation function. The layer had 54
units and the regularization strength was 2.8911e-07.

Fig 2 shows the minimum classification error plots for
the three different algorithms respectively. The minimum
classification error plots the minimum errors observed against
all the iterations. Each of the figures displays errors estimated,
errors observed, best point hyperparameter, and minimum error
hyperparameter. In the case of ensemble classifiers, the optimal
hyperparameters are obtained in the 30th iteration as illustrated
in Fig 2(a). From Fig 2(b), it can be observed that the best
hyperparameter settings for the support vector machines were
obtained in the 26th iteration, and for the neural networks the
best hyperparameters were obtained in the 10th iteration as
seen in Fig 2(c).

Confusion matrix is a tool used to evaluate the accuracy
of a machine learning model based on the true positives and
negatives, and false positives and negatives. Fig 3(a) shows the
confusion matrix on the test data set for the ensemble classifier
and obtained an accuracy of 99.9%, while the validation
accuracy was 99.7%. Fig 3(b) reports the confusion matrix
on the test set for the support vector machine with a 99.3%
accuracy and 99.2% validation accuracy. The neural network
achieved similar results as can be seen from Fig 3(c). The test
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Fig. 4. Comparisons of different machine learning models with different signal-
to-noise-ratio data in terms of accuracy. The blue starred curve represents
the accuracies for the ensemble classifier, the red circled curve represents the
support vector machine, and the orange squared curve represents the neural
network.

accuracy was 99.3% while the validation accuracy was 99.2%.
The ensemble classifier performed a bit better compared to the
rest of the algorithms, however, all the results are very close.

B. Added Gaussian Noise

To increase the robustness in the real world, we trained
the models with noiseless data, and the test data was exposed
to Additive White Gaussian Noise of different levels from 0
dB to 100 dB with an increment of 5 dB. The same set of
features was extracted from the noiseless training data and
the noisy test data. A comparison of the performance of the
ensemble classifier, support vector machine, and neural network
is illustrated in Fig 4 with respect to different SNR values. All
the models achieve over 90% accuracy at 45 dB SNR test data
which supports the robustness of the system.

C. Selected Features

We explored the stretch of feature selection in our experiment.
Feature selection is preferred compared to feature transforma-
tion as it is suitable for maintaining the feature space as it
was. Feature selection reduces the dimensionality of the feature
space and thus reduces the computational cost. We deployed a
wrapper-type feature selection method called sequential feature
selection and used the ensemble bagged tree algorithm as the
base evaluating model. A subset of 2000 samples was used
for the feature selection purpose. The algorithm ended up with
9 features out of 19, reducing the feature dimension by over
52%. The selected features with more importance are some
MFCC coefficients (1, 3, 4, 6, 7, 8, 13), spectral skewness,
and kurtosis. Table I shows the performance evaluation of the
three explored machine learning algorithms with the selected
9 features. For this test, the complete training set was used for
training, validation, and testing.

TABLE I
RESULTS OF DIFFERENT MACHINE LEARNING ALGORITHMS WITH

SELECTED FEATURES. ENSEMBLE CLASSIFIERS PROVIDE THE BEST
PERFORMANCE WITH A SUBSET OF THE RELEVANT FEATURES.

Model Name Validation Accuracy Test Accuracy

Ensemble Tree 99.4 99.2
Support Vector Machine 98.7 99.0
Neural Network 99.0 99.3

V. CONCLUSION

Through rigorous experimentation and analysis, we demon-
strate the efficacy of the AdaBoost ensemble classifier in
gunshot recognition. The spectral characteristics of the audio
signal from the gunshots were used for training different
algorithms. We exhibited the evaluations of ensemble classifiers,
support vector machines, and neural networks across varying
Gaussian noise levels. To optimize the performance of the
algorithms, we tuned the hyperparameters for each of the
algorithms. To reduce the dimensionality we have deployed a
wrapper-type sequential feature selection algorithm that reduces
the feature space by over 52%. The model still shows similar
performance with a few important features compared to the
complete set of features. In summary, we present practical
insights into the selection and optimization of machine learning
models for a robust gunshot recognition system.
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