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Absolute Adsorption Approximation 

The maximum correction term in Equation 3 in the main text (𝜌𝜌g𝑉𝑉𝑎𝑎) was determined by assuming that 
the maximum adsorbed phase volume is equal to the total pore volume of the adsorbent. 

For the MOF used in this study, Ni3(pzdc)2(ade)2(H2O)4, the total pore volume accessible to H2 was 
calculated using a standard software package (Zeo++) using the experimentally determined crystal 
structure (measured by K. C. Stylianou et al.[S1]) and a probe radius of 1.2 Å (corresponding to H2); it was 
found to be 0.119 mL g-1. Furthermore, the densest gas phase of hydrogen encountered under the 
experimental conditions explored in this work (calculated using NIST Refprop) was 0.139 mmol mL-1 at 
70 K and 810 mbar. 

By combining these two quantities, the maximum possible correction term is 0.0166 mmol g-1 which is 
~0.7% of the measured (excess) uptake quantity at 70 K and 810 mbar. This is below the standard error 
associated with the measurement and is hence negligible. 

 

 

Clausius-Clapeyron Approximation 

In general, adsorption equilibria obey the Clapeyron equation which is a general relation for any two 
phases in thermal and mechanical equilibrium: 

∆𝑎𝑎𝑎𝑎𝑎𝑎𝐻𝐻[𝑇𝑇,𝑃𝑃] = 𝑇𝑇 ∆𝑎𝑎𝑎𝑎𝑎𝑎𝑆𝑆 = 𝑇𝑇 �
𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇
�
𝜃𝜃
∆𝑎𝑎𝑎𝑎𝑎𝑎𝑣𝑣 = 𝑇𝑇 �

𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇
�
𝜃𝜃
�𝑣𝑣𝑎𝑎 − 𝑣𝑣𝑔𝑔� 

When one of the two phases in equilibrium is an ideal gas and the other is a condensed phase (e.g., an 
adsorbed phase), it is common to employ an approximation that the condensed phase molar volume is 
negligible compared to the gas and thus derive the Clausius-Clapeyron subvariant: 

𝑞𝑞𝑎𝑎𝑠𝑠[𝑇𝑇,𝑃𝑃] =  −∆𝑎𝑎𝑎𝑎𝑎𝑎𝐻𝐻[𝑇𝑇,𝑃𝑃] =  
𝑅𝑅𝑇𝑇2

𝑃𝑃
�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑇𝑇
�
𝜃𝜃

 

The above equations can be explicitly solved for all of the models explored in this work, each giving rise 
to a specific form of the partial derivative and therefore a specific relationship between the fitting 
parameters and the isosteric enthalpy of adsorption. These relationships are summarized in Equation 12 
in the main text. 
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Powder X-Ray Diffraction Analysis 

The phase purity of Ni3(pzdc)2(ade)2(H2O)4 was assessed by powder X-ray diffraction (XRD) methods, as 
shown in Figure S1. 

 

 

Figure S1. XRD pattern of Ni3(pzdc)2(ade)2(H2O)4 and Ni3(pzdc)2(ade)2(H2O)4·2.18H2O compared to a 
simulated pattern (based on the single-crystal XRD structure of Ni3(pzdc)2(ade)2(H2O)4·2.18H2O[S1]). 

 

Cryostat Temperature Calibration 

The cryostat temperature was calibrated by comparison to boiling nitrogen, as shown in Figure S2. 

 

 

Figure S2. Equilibrium excess adsorption uptake of H2 on Ni3(pzdc)2(ade)2(H2O)4 in a liquid nitrogen bath 
(N2 boils at 75.9 K in Bozeman, Montana) and at the same set-point using a cryostat (75.9 K).  
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Langmuir Adsorption Theory 
 
In the “classic” (also known as the single-site monolayer) Langmuir model, there are three simple 
assumptions used to define the adsorption system: 

 
1. Every adsorption site is identical, independent, and distinguishable (hence “single-site”) 
2. Each adsorption site can accommodate up to 1 adsorbate molecule (hence “monolayer”) 
3. The chemical reservoir is an ideal gas 

 
The third assumption is necessary to obtain the classic Langmuir equation from first principles, but is not 
always strictly ensured by the system of study. In this case, the conditions investigated experimentally 
meet the criteria to be considering suitably ideal (see Clausius-Clapeyron Approximation above). 
Therefore, if the adsorbent is crystalline and contains identical sites that can host only a single adsorbate 
per site, the adsorption isotherm will be described by the Langmuir model. 
 
When held in contact with a thermal reservoir (held at temperature 𝑇𝑇) and a chemical reservoir (held at 
chemical potential 𝜇𝜇), a single such adsorption site has the following grand canonical partition function 
(owing to two possible states, empty or singly occupied, according to the first assumption): 
 

𝜉𝜉[𝛽𝛽,𝛽𝛽𝜇𝜇�] = � 𝑞𝑞𝑖𝑖𝑒𝑒−𝛽𝛽𝐸𝐸𝑖𝑖𝑒𝑒𝛽𝛽𝜇𝜇�𝑁𝑁𝑖𝑖
𝑖𝑖 (𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎)

= 1 + 𝑞𝑞[𝛽𝛽]𝑒𝑒−𝛽𝛽𝛽𝛽𝑒𝑒𝛽𝛽𝜇𝜇�  

 

𝛽𝛽 =
1
𝑘𝑘𝐵𝐵𝑇𝑇

 

 

𝛽𝛽𝜇𝜇� =
𝜇𝜇�
𝑘𝑘𝐵𝐵𝑇𝑇

=
1
𝑘𝑘𝐵𝐵𝑇𝑇

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝑇𝑇,𝑃𝑃

 

 
In the above equations, 𝑞𝑞 is the canonical partition function for the adsorbate when occupying the 
adsorption site, and 𝜀𝜀 is the binding energy (difference in energy between the bulk adsorbate and the 
bound adsorbate). 
 
The total grand canonical partition function for the surface (containing 𝜕𝜕𝑎𝑎 identical, independent, and 
distinguishable sites, according to the second assumption) is then: 
 

𝒵𝒵[𝛽𝛽,𝛽𝛽𝜇𝜇�] = � 𝜉𝜉𝑗𝑗
𝑗𝑗 (𝑎𝑎𝑖𝑖𝑠𝑠𝑠𝑠𝑎𝑎)

= 𝜉𝜉𝑁𝑁𝑠𝑠 = �1 + 𝑞𝑞[𝛽𝛽]𝑒𝑒−𝛽𝛽𝛽𝛽𝑒𝑒𝛽𝛽𝜇𝜇��𝑁𝑁𝑠𝑠  

 
Finally, following the usual thermodynamic relations, the expectation value for the number of sites 
occupied, which is equivalent to the adsorption equation, is: 
 

〈𝜕𝜕〉[𝛽𝛽,𝛽𝛽𝜇𝜇�] = 𝜕𝜕𝑎𝑎 ∙
𝑞𝑞[𝛽𝛽] ∙ 𝑒𝑒−𝛽𝛽𝛽𝛽 ∙ 𝑒𝑒𝛽𝛽𝜇𝜇�

1 + 𝑞𝑞[𝛽𝛽] ∙ 𝑒𝑒−𝛽𝛽𝛽𝛽 ∙ 𝑒𝑒𝛽𝛽𝜇𝜇�
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This is much more commonly expressed in terms of the pressure of the chemical reservoir, 𝑃𝑃∗. To do so 
requires invoking the third assumption. The chemical potential of an ideal (monatomic) gas is: 
 

𝑃𝑃∗ =
(2𝜋𝜋𝑚𝑚�)1.5 (𝑘𝑘𝐵𝐵𝑇𝑇)2.5

ℎ3
𝑒𝑒𝛽𝛽𝜇𝜇�  

 
Therefore: 
 

〈𝜕𝜕〉[𝑇𝑇,𝑃𝑃∗] = 𝜕𝜕𝑎𝑎 ∙
𝐴𝐴[𝑇𝑇] ∙ 𝑒𝑒−

𝛽𝛽
𝑘𝑘𝐵𝐵𝑇𝑇 ∙ 𝑃𝑃∗

1 + 𝐴𝐴[𝑇𝑇] ∙ 𝑒𝑒−
𝛽𝛽

𝑘𝑘𝐵𝐵𝑇𝑇 ∙ 𝑃𝑃∗
 

 
The fractional occupancy is simply: 
 

𝜃𝜃[𝑇𝑇,𝑃𝑃∗] =
〈𝜕𝜕〉
𝜕𝜕𝑎𝑎

=
𝐴𝐴[𝑇𝑇] ∙ 𝑒𝑒−

𝛽𝛽
𝑘𝑘𝐵𝐵𝑇𝑇 ∙ 𝑃𝑃∗

1 + 𝐴𝐴[𝑇𝑇] ∙ 𝑒𝑒−
𝛽𝛽

𝑘𝑘𝐵𝐵𝑇𝑇 ∙ 𝑃𝑃∗
 

 
The pre-exponential term, 𝐴𝐴[𝑇𝑇], varies depending on the treatment of the bound molecule on the 
adsorption site (see Table S1). We note that, in general, the form of 𝐴𝐴[𝑇𝑇] is independent of the nature 
of the ideal gas adsorbate (i.e., monatomic, diatomic, etc.), as long as the same internal degrees of 
freedom are retained in the adsorbed state as in the gas state. 
 
Adsorption Site Descriptions and A[T] 
 
To derive 𝐴𝐴[𝑇𝑇], an explicit form of 𝑞𝑞[𝛽𝛽] (i.e., 𝑞𝑞[𝑇𝑇]) is needed. Four representative examples are explored 
below and a more systematic list is given in Table S1. 
 

Fixed (i.e., “model -2.5”): 
If the bound molecule has no degrees of freedom (the adsorption site is either “on” or “off”, 
“occupied” or “empty”), then the canonical partition functions of the adsorbed molecule in all 
three spatial dimensions are simply: 
 

𝑞𝑞𝐷𝐷𝐷𝐷[𝛽𝛽] = 0 + 1 = 1 
In other words: 
 

𝑞𝑞𝐷𝐷𝑖𝑖𝐹𝐹,𝐹𝐹[𝛽𝛽] = 𝑞𝑞𝐷𝐷𝐷𝐷,𝐹𝐹[𝛽𝛽] = 1 
𝑞𝑞𝐷𝐷𝑖𝑖𝐹𝐹,𝑦𝑦[𝛽𝛽] = 𝑞𝑞𝐷𝐷𝐷𝐷,𝑦𝑦[𝛽𝛽] = 1 
𝑞𝑞𝐷𝐷𝑖𝑖𝐹𝐹,𝑧𝑧[𝛽𝛽] = 𝑞𝑞𝐷𝐷𝐷𝐷,𝑧𝑧[𝛽𝛽] = 1 

 
Together: 
 

𝑞𝑞𝐷𝐷𝑖𝑖𝐹𝐹[𝛽𝛽] = 𝑞𝑞𝐷𝐷𝐷𝐷,𝐹𝐹[𝛽𝛽] × 𝑞𝑞𝐷𝐷𝐷𝐷,𝑦𝑦[𝛽𝛽] × 𝑞𝑞𝐷𝐷𝐷𝐷,𝑧𝑧[𝛽𝛽] = 1 × 1 × 1 = 1 
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Then, following the statistical mechanics above: 
 

𝜉𝜉𝐷𝐷𝑖𝑖𝐹𝐹[𝛽𝛽,𝛽𝛽𝜇𝜇�] = 1 + 𝑒𝑒−𝛽𝛽𝛽𝛽𝑒𝑒𝛽𝛽𝜇𝜇�  
 

𝐴𝐴𝐷𝐷𝑖𝑖𝐹𝐹[𝑇𝑇] =
ℎ3

(2𝜋𝜋𝑚𝑚�)1.5 (𝑘𝑘𝐵𝐵𝑇𝑇)2.5 

 
This is confirmed by using a more general approach which integrates over the entire potential 
experienced by the adsorbed molecule. For a perfectly fixed adsorbate, the potential is simply 
an inverted Dirac delta function (whose value is equal to the energy of adsorption, 𝜀𝜀, at the 
origin and infinity everywhere else), centered at the adsorption site. The explicit details of this 
integration approach are given elsewhere.[S2] 
 
3D Ideal Gas (i.e., “model -1”): 
If the bound molecule is treated as a particle in a box in all three spatial dimensions, then the 
individual partition functions are simply: 
 

𝑞𝑞𝑆𝑆𝑃𝑃[𝛽𝛽] = 𝐿𝐿
√2𝜋𝜋𝑚𝑚�
ℎ�𝛽𝛽

=
𝐿𝐿
𝛬𝛬

 

 
where: 

𝛬𝛬 =
ℎ

�2𝜋𝜋𝑚𝑚�𝑘𝑘𝐵𝐵𝑇𝑇
=

ℎ�𝛽𝛽
√2𝜋𝜋𝑚𝑚�

 

 
In other words: 

𝑞𝑞3𝐷𝐷𝐷𝐷,𝐹𝐹[𝛽𝛽] = 𝑞𝑞𝑆𝑆𝑃𝑃,𝐹𝐹[𝛽𝛽] =
𝐿𝐿𝐹𝐹
𝛬𝛬

 

𝑞𝑞3𝐷𝐷𝐷𝐷,𝑦𝑦[𝛽𝛽] = 𝑞𝑞𝑆𝑆𝑃𝑃,𝑦𝑦[𝛽𝛽] =
𝐿𝐿𝑦𝑦
𝛬𝛬

 

𝑞𝑞3𝐷𝐷𝐷𝐷,𝑧𝑧[𝛽𝛽] = 𝑞𝑞𝑆𝑆𝑃𝑃,𝑧𝑧[𝛽𝛽] =
𝐿𝐿𝑧𝑧
𝛬𝛬

 

 
Together: 

𝑞𝑞3𝐷𝐷𝐷𝐷[𝛽𝛽] = 𝑞𝑞𝑆𝑆𝑃𝑃,𝐹𝐹[𝛽𝛽] × 𝑞𝑞𝑆𝑆𝑃𝑃,𝑦𝑦[𝛽𝛽] × 𝑞𝑞𝑆𝑆𝑃𝑃,𝑧𝑧[𝛽𝛽] =
𝐿𝐿𝐹𝐹
𝛬𝛬

×
𝐿𝐿𝑦𝑦
𝛬𝛬

×
𝐿𝐿𝑧𝑧
𝛬𝛬

=
𝑉𝑉𝑎𝑎
𝛬𝛬3

 

 
Then, following the statistical mechanics above: 
 

𝜉𝜉3𝐷𝐷𝐷𝐷[𝛽𝛽,𝛽𝛽𝜇𝜇�] = 1 +
𝑉𝑉𝑎𝑎
𝛬𝛬3

𝑒𝑒−𝛽𝛽𝛽𝛽𝑒𝑒𝛽𝛽𝜇𝜇�  

 

𝐴𝐴3𝐷𝐷𝐷𝐷[𝑇𝑇] =
𝑉𝑉𝑎𝑎
𝑘𝑘𝐵𝐵𝑇𝑇
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This is also confirmed by using a more general approach which integrates over the entire 
potential experienced by the adsorbed molecule. For an adsorbate in a box, the potential along 
𝑥𝑥 is simply a square-well of width 𝐿𝐿𝐹𝐹 (whose value is equal to the energy of adsorption, 𝜀𝜀, in the 
box and infinity everywhere else), centered at the adsorption site. The explicit details of this 
integration approach are given elsewhere.[S2] 
 
Einstein Adsorbed Phase (i.e., “model +0.5”): 
If the bound molecule is treated as a harmonic oscillator in all three spatial dimensions, then the 
individual partition functions are simply: 
 

𝑞𝑞𝑄𝑄𝑃𝑃[𝛽𝛽] =
2𝜋𝜋
ℎ𝜔𝜔𝛽𝛽

 

 
In other words: 

𝑞𝑞𝐸𝐸𝑖𝑖𝐸𝐸,𝐹𝐹[𝛽𝛽] = 𝑞𝑞𝑄𝑄𝑃𝑃,𝐹𝐹[𝛽𝛽] =
2𝜋𝜋
ℎ𝜔𝜔𝐹𝐹𝛽𝛽

 

𝑞𝑞𝐸𝐸𝑖𝑖𝐸𝐸,𝑦𝑦[𝛽𝛽] = 𝑞𝑞𝑄𝑄𝑃𝑃,𝑦𝑦[𝛽𝛽] =
2𝜋𝜋
ℎ𝜔𝜔𝑦𝑦𝛽𝛽

 

𝑞𝑞𝐸𝐸𝑖𝑖𝐸𝐸,𝑧𝑧[𝛽𝛽] = 𝑞𝑞𝑄𝑄𝑃𝑃,𝑧𝑧[𝛽𝛽] =
2𝜋𝜋
ℎ𝜔𝜔𝑧𝑧𝛽𝛽

 

 
Together: 
 

𝑞𝑞𝐸𝐸𝑖𝑖𝐸𝐸[𝛽𝛽] = 𝑞𝑞𝑄𝑄𝑃𝑃,𝐹𝐹[𝛽𝛽] × 𝑞𝑞𝑄𝑄𝑃𝑃,𝑦𝑦[𝛽𝛽] × 𝑞𝑞𝑄𝑄𝑃𝑃,𝑧𝑧[𝛽𝛽] =
2𝜋𝜋
ℎ𝜔𝜔𝐹𝐹𝛽𝛽

×
2𝜋𝜋
ℎ𝜔𝜔𝑦𝑦𝛽𝛽

×
2𝜋𝜋
ℎ𝜔𝜔𝑧𝑧𝛽𝛽

 

 
When all three dimensions are taken to have the same natural frequency of oscillation, 𝜔𝜔𝑎𝑎: 
 

𝑞𝑞𝐸𝐸𝑖𝑖𝐸𝐸[𝛽𝛽] = �
2𝜋𝜋
ℎ𝜔𝜔𝑎𝑎𝛽𝛽

�
3

 

 
Then, following the statistical mechanics above: 
 

𝜉𝜉𝐸𝐸𝑖𝑖𝐸𝐸[𝛽𝛽,𝛽𝛽𝜇𝜇�] = 1 + �
2𝜋𝜋
ℎ𝜔𝜔𝑎𝑎𝛽𝛽

�
3
𝑒𝑒−𝛽𝛽𝛽𝛽𝑒𝑒𝛽𝛽𝜇𝜇�  

 

𝐴𝐴𝐸𝐸𝑖𝑖𝐸𝐸[𝑇𝑇] =
(2𝜋𝜋)1.5 (𝑘𝑘𝐵𝐵𝑇𝑇)0.5

𝜔𝜔𝑎𝑎3 (𝑚𝑚�)1.5  

 
This is confirmed by using a more general approach which integrates over the entire potential 
experienced by the adsorbed molecule. For a harmonic oscillator, the potential along 𝑥𝑥 is simply 
a quadratic function with a minimum at 𝜀𝜀 (whose value is equal to 𝜀𝜀 + ½𝑚𝑚�𝜔𝜔𝐹𝐹2𝑥𝑥2), centered at 
the adsorption site. The explicit details of this integration approach are given elsewhere.[S2] 
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2D Ideal Gas with z-Oscillation (i.e., “model -0.5”): 
Instead of treating all three spatial dimensions as equivalent, other models can be developed 
that treat each dimension differently. For simplicity, the above three types of potential can be 
interchanged: inverted delta functions, square wells, or quadratic potentials. For example, if the 
bound molecule is treated as a particle in a 2D box (accounting for the two spatial dimensions 
along the surface of the adsorbent as square wells) and a harmonic oscillator in the direction 
orthogonal to the surface (treated as a quadratic potential, nominally in the 𝑧𝑧 direction), then 
the individual partition functions are: 
 

𝑞𝑞2𝐷𝐷𝐷𝐷,𝐹𝐹[𝛽𝛽] = 𝑞𝑞𝑆𝑆𝑃𝑃,𝐹𝐹[𝛽𝛽] =
𝐿𝐿𝐹𝐹
𝛬𝛬

 

𝑞𝑞2𝐷𝐷𝐷𝐷,𝑦𝑦[𝛽𝛽] = 𝑞𝑞𝑆𝑆𝑃𝑃,𝑦𝑦[𝛽𝛽] =
𝐿𝐿𝑦𝑦
𝛬𝛬

 

𝑞𝑞2𝐷𝐷𝐷𝐷,𝑧𝑧[𝛽𝛽] = 𝑞𝑞𝑄𝑄𝑃𝑃,𝑧𝑧[𝛽𝛽] =
2𝜋𝜋
ℎ𝜔𝜔𝑧𝑧𝛽𝛽

 

 
Together: 
 

𝑞𝑞2𝐷𝐷𝐷𝐷[𝛽𝛽] = 𝑞𝑞𝑆𝑆𝑃𝑃,𝐹𝐹[𝛽𝛽] × 𝑞𝑞𝑆𝑆𝑃𝑃,𝑦𝑦[𝛽𝛽] × 𝑞𝑞𝑄𝑄𝑃𝑃,𝑧𝑧[𝛽𝛽] =
𝐿𝐿𝐹𝐹
𝛬𝛬

×
𝐿𝐿𝑦𝑦
𝛬𝛬

×
2𝜋𝜋
ℎ𝜔𝜔𝑧𝑧𝛽𝛽

=
𝐴𝐴𝑎𝑎
𝛬𝛬2

�
2𝜋𝜋
ℎ𝜔𝜔𝑎𝑎𝛽𝛽

� 

 
Then, following the statistical mechanics above: 
 

𝜉𝜉2𝐷𝐷𝐷𝐷[𝛽𝛽,𝛽𝛽𝜇𝜇�] = 1 +
𝐴𝐴𝑎𝑎
𝛬𝛬2

�
2𝜋𝜋
ℎ𝜔𝜔𝑎𝑎𝛽𝛽

� 𝑒𝑒−𝛽𝛽𝛽𝛽𝑒𝑒𝛽𝛽𝜇𝜇�  

 

𝐴𝐴2𝐷𝐷𝐷𝐷[𝑇𝑇] =
(2𝜋𝜋)0.5 𝐴𝐴𝑎𝑎

𝜔𝜔𝑎𝑎 (𝑚𝑚�)0.5 (𝑘𝑘𝐵𝐵𝑇𝑇)0.5 

 
Other possibilities for mixed-potential adsorption sites are shown in Table S1 and indexed 
according to the type of potential in each of the spatial directions (𝑥𝑥, 𝑦𝑦, and 𝑧𝑧). Upon derivation 
of the adsorption model, the form of 𝐴𝐴[𝑇𝑇] is unique to each choice of 𝑞𝑞[𝛽𝛽]. The high-T heat 
capacity of the adsorbed phase in each model is equal to the order of T in the expression for 
𝑞𝑞[𝛽𝛽] (e.g., 𝑞𝑞2𝐷𝐷𝐷𝐷[𝛽𝛽] ∝ 𝛽𝛽−2 ∝ 𝑇𝑇2 so the heat capacity at high temperature is 2kBT). 
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Nomenclature: 
 

Physical Constant Variable Value Units 
    

Boltzmann 𝑘𝑘𝐵𝐵 1.381 x 10-23 J K-1 
Planck ℎ 6.626 x 10-34 J s 
    
    
Quantity Variable Typical Order Units 
    

Number of Adsorption Sites 𝜕𝜕𝑎𝑎 1023 molecules 
Binding Energy 𝜀𝜀 101 kJ mol-1 
Adsorbate Mass 𝑚𝑚�  10-27 kg 
Adsorption Site Length 𝐿𝐿𝑎𝑎 10-1 nm 
Adsorption Site Area 𝐴𝐴𝑎𝑎 10-2 nm2 
Adsorption Site Volume 𝑉𝑉𝑎𝑎 10-3 nm3 
Natural Frequency 𝜔𝜔𝑎𝑎 1013 s-1 

 
 
Thermal deBroglie Wavelength: 
 

𝛬𝛬 =
ℎ

�2𝜋𝜋𝑚𝑚�𝑘𝑘𝐵𝐵𝑇𝑇
=

ℎ�𝛽𝛽
√2𝜋𝜋𝑚𝑚�
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Table S1. Partition functions and T-dependence of the adsorption equation for single-site Langmuir models of ideal gases, depending on the 
number and potential form of the external degrees of freedom in the adsorbed state. 
 

 Single Adsorption Site Total Adsorption System 
Model Name Partition Function 

(x × y × z) 
Degrees of 
Freedom 

High T Heat 
Capacity (kBT) 

Explicit 𝑨𝑨[𝑻𝑻] T Dep of 𝑨𝑨 Δ Heat Capacity 
(RT) 

Einstein 
Crystal 

QP × QP × QP 3 1 + 1 + 1 = 3 (2𝜋𝜋)1.5 (𝑘𝑘𝐵𝐵𝑇𝑇)0.5

𝜔𝜔𝑎𝑎3 (𝑚𝑚�)1.5  
0.5 +1.5 

(no physical 
picture) 

QP × QP × SP 3 1 + 1 + 0.5 = 2.5 2𝜋𝜋 𝐿𝐿𝑎𝑎
𝜔𝜔𝑎𝑎2 (𝑚𝑚�) 0 +1 

2D Lattice Gas QP × QP × DF 2 1 + 1 + 0 = 2 (2𝜋𝜋)0.5 ℎ
𝜔𝜔𝑎𝑎2 (𝑚𝑚�)1.5 (𝑘𝑘𝐵𝐵𝑇𝑇)0.5 

-0.5 +0.5 

2D Ideal Gas w 
z-Oscillation 

SP × SP × QP 3 0.5 + 0.5 + 1 = 2 (2𝜋𝜋)0.5 𝐴𝐴𝑎𝑎
𝜔𝜔𝑎𝑎 (𝑚𝑚�)0.5 (𝑘𝑘𝐵𝐵𝑇𝑇)0.5 

-0.5 +0.5 

(no physical 
picture) 

QP × SP × DF 2 1 + 0.5 + 0 = 1.5 ℎ 𝐿𝐿𝑎𝑎
𝜔𝜔𝑎𝑎 (𝑚𝑚�) (𝑘𝑘𝐵𝐵𝑇𝑇) 

-1 0 

3D Ideal Gas SP × SP × SP 3 0.5 + 0.5 + 0.5 = 1.5 𝑉𝑉𝑎𝑎
𝑘𝑘𝐵𝐵𝑇𝑇

 -1 0 

z-Oscillators DF × DF × QP 1 0 + 0 + 1 = 1 ℎ2

𝜔𝜔𝑎𝑎 (2𝜋𝜋𝑚𝑚�3)0.5 (𝑘𝑘𝐵𝐵𝑇𝑇)1.5 
-1.5 -0.5 

2D Ideal Gas SP × SP × DF 2 0.5 + 0.5 + 0 = 1 ℎ 𝐴𝐴𝑎𝑎
(2𝜋𝜋𝑚𝑚�)0.5 (𝑘𝑘𝐵𝐵𝑇𝑇)1.5 

-1.5 -0.5 

1D Ideal Gas SP × DF × DF 1 0.5 + 0 + 0 = 0.5 ℎ2 𝐿𝐿𝑎𝑎
(2𝜋𝜋𝑚𝑚�) (𝑘𝑘𝐵𝐵𝑇𝑇)2 

-2 -1 

Fixed DF × DF × DF 0 0 + 0 + 0 = 0 ℎ3

(2𝜋𝜋𝑚𝑚�)1.5 (𝑘𝑘𝐵𝐵𝑇𝑇)2.5 
-2.5 -1.5 

 

Abbreviations:         Variables in red are 
DF = delta function        fitting constants of 
SP = square potential        the resulting model. 
QP = quadratic potential 
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